期刊论文详细信息
Biotechnology for Biofuels
Development of an electrotransformation protocol for genetic manipulation of Clostridium pasteurianum
Michael E Pyne1  Murray Moo-Young1  Duane A Chung2  C Perry Chou1 
[1] Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
[2] Centurion Biofuels, Corp., Rm. 5113 Michael G. DeGroote Centre for Learning and Discovery, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
关键词: Transformation;    Restriction;    Methylation;    Glycerol;    Genetic engineering;    Electroporation;    Clostridium pasteurianum;    Biobutanol;    Butanol;    Biofuels;   
Others  :  798104
DOI  :  10.1186/1754-6834-6-50
 received in 2013-01-11, accepted in 2013-04-04,  发布年份 2013
PDF
【 摘 要 】

Background

Reducing the production cost of, and increasing revenues from, industrial biofuels will greatly facilitate their proliferation and co-integration with fossil fuels. The cost of feedstock is the largest cost in most fermentation bioprocesses and therefore represents an important target for cost reduction. Meanwhile, the biorefinery concept advocates revenue growth through complete utilization of by-products generated during biofuel production. Taken together, the production of biofuels from low-cost crude glycerol, available in oversupply as a by-product of bioethanol production, in the form of thin stillage, and biodiesel production, embodies a remarkable opportunity to advance affordable biofuel development. However, few bacterial species possess the natural capacity to convert glycerol as a sole source of carbon and energy into value-added bioproducts. Of particular interest is the anaerobe Clostridium pasteurianum, the only microorganism known to convert glycerol alone directly into butanol, which currently holds immense promise as a high-energy biofuel and bulk chemical. Unfortunately, genetic and metabolic engineering of C. pasteurianum has been fundamentally impeded due to lack of an efficient method for deoxyribonucleic acid (DNA) transfer.

Results

This work reports the development of an electrotransformation protocol permitting high-level DNA transfer to C. pasteurianum ATCC 6013 together with accompanying selection markers and vector components. The CpaAI restriction-modification system was found to be a major barrier to DNA delivery into C. pasteurianum which we overcame by in vivo methylation of the recognition site (5’-CGCG-3’) using the M.FnuDII methyltransferase. With proper selection of the replication origin and antibiotic-resistance marker, we initially electroporated methylated DNA into C. pasteurianum at a low efficiency of 2.4 × 101 transformants μg-1 DNA by utilizing conditions common to other clostridial electroporations. Systematic investigation of various parameters involved in the cell growth, washing and pulse delivery, and outgrowth phases of the electrotransformation procedure significantly elevated the electrotransformation efficiency, up to 7.5 × 104 transformants μg-1 DNA, an increase of approximately three order of magnitude. Key factors affecting the electrotransformation efficiency include cell-wall-weakening using glycine, ethanol-mediated membrane solubilization, field strength of the electric pulse, and sucrose osmoprotection.

Conclusions

C. pasteurianum ATCC 6013 can be electrotransformed at a high efficiency using appropriately methylated plasmid DNA. The electrotransformation method and tools reported here should promote extensive genetic manipulation and metabolic engineering of this biotechnologically important bacterium.

【 授权许可】

   
2013 Pyne et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706101117511.pdf 1110KB PDF download
Figure 6. 40KB Image download
Figure 5. 60KB Image download
Figure 4. 24KB Image download
Figure 3. 35KB Image download
Figure 2. 43KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol production by clostridia. Biotechnol Bioeng 2008, 101:209-228.
  • [2]Zheng YN, Li LZ, Xian M, Ma YJ, Yang JM, Xu X, He DZ: Problems with the microbial production of butanol. J Ind Microbiol Biotechnol 2009, 36:1127-1138.
  • [3]Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R: Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenerg 2010, 34:515-524.
  • [4]Qureshi N, Blaschek HP: Economics of butanol fermentation using hyper-butanol producing Clostridium beijerinckii BA101. Food Bioprod Process 2000, 78:139-144.
  • [5]da Silva GP, Mack M, Contiero J: Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009, 27:30-39.
  • [6]Johnson DT, Taconi KA: The glycerin glut: Options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 2007, 26:338-348.
  • [7]Yang FX, Hanna MA, Sun RC: Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol Biofuels 2012, 5:1-10. BioMed Central Full Text
  • [8]Vanhaandel AC, Catunda PFC: Profitability increase of alcohol distilleries by the rational use of by products. Water Sci Technol 1994, 29:117-124.
  • [9]Vasconcelos I, Girbal L, Soucaille P: Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol 1994, 176:1443-1450.
  • [10]Heyndrickx M, Devos P, Vancanneyt M, Deley J: The fermentation of glycerol by Clostridium butyricum LMG-1212 T2 and LMG-1213 T1 and C. pasteurianum LMG-3285. Appl Microbiol Biotechnol 1991, 34:637-642.
  • [11]Nakas JP, Schaedle M, Parkinson CM, Coonley CE, Tanenbaum SW: System-development for linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 1983, 46:1017-1023.
  • [12]Biebl H: Fermentation of glycerol by Clostridium pasteurianum - Batch and continuous culture studies. J Ind Microbiol Biotechnol 2001, 27:18-26.
  • [13]Dabrock B, Bahl H, Gottschalk G: Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol 1992, 58:1233-1239.
  • [14]Jensen TO, Kvist T, Mikkelsen MJ, Christensen PV, Westermann P: Fermentation of crude glycerol from biodiesel production by Clostridium pasteurianum. J Ind Microbiol Biotechnol 2012, 39:709-717.
  • [15]Khanna S, Jaiswal S, Goyal A, Moholkar VS: Ultrasound enhanced bioconversion of glycerol by Clostridium pasteurianum: A mechanistic investigation. Chem Eng J 2012, 200:416-425.
  • [16]Moon C, Lee CH, Sang BI, Um Y: Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum. Bioresour Technol 2011, 102:10561-10568.
  • [17]Taconi KA, Venkataramanan KP, Johnson DT: Growth and solvent production by Clostridium pasteurianum ATCC (R) 6013TM utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy 2009, 28:100-110.
  • [18]Ahn JH, Sang BI, Urn Y: Butanol production from thin stillage using Clostridium pasteurianum. Bioresour Technol 2011, 102:4934-4937.
  • [19]Clarke DJ, Fuller FM, Morris JG: Proton-translocating adenosine-triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum.1. ATP phosphohydrolase activity. Eur J Biochem 1979, 98:597-612.
  • [20]Richards DF, Linnett PE, Oultram JD: Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM-568. J Gen Microbiol 1988, 134:3151-3157.
  • [21]Jensen TO, Kvist T, Mikkelsen MJ, Westermann P: Production of 1,3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol. AMB Express 2012, 2:44. BioMed Central Full Text
  • [22]Malaviya A, Jang YS, Lee SY: Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol 2012, 93:1485-1494.
  • [23]Trevors JT, Chassy BM, Dower WJ, Blaschek HP: Electrotransformation of bacteria by plasmid DNA. In Guide to electroporation and electrofusion. Edited by Chang DC, Chassy BM, Saunders JA, Sowers AE. New York: Academic Press Inc; 1992:265-283.
  • [24]Aune TEV, Aachmann FL: Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol 2010, 85:1301-1313.
  • [25]Jennert KCB, Tardif C, Young DI, Young M: Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology-(UK) 2000, 146:3071-3080.
  • [26]Mermelstein LD, Welker NE, Bennett GN, Papoutsakis ET: Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Bio/Technology 1992, 10:190-195.
  • [27]Leang C, Ueki T, Nevin KP, Lovley DR: A genetic system for Clostridium ljungdahlii: A chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 2013, 79:1102-1109.
  • [28]Scott PT, Rood JI: Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 1989, 82:327-333.
  • [29]Zhu Y, Liu XG, Yang ST: Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol Bioeng 2005, 90:154-166.
  • [30]Klapatch TR, Demain AL, Lynd LR: Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum. Appl Microbiol Biotechnol 1996, 45:127-131.
  • [31]Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P: Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 2005, 7:329-336.
  • [32]Dong HJ, Zhang YP, Dai ZJ, Li Y: Engineering Clostridium strain to accept unmethylated DNA. PLoS One 2010, 5:e9038.
  • [33]Roberts RJ, Vincze T, Posfai J, Macelis D: REBASE-a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 2010, 38:D234-D236.
  • [34]Heap JT, Pennington OJ, Cartman ST, Minton NP: A modular system for Clostridium shuttle plasmids. J Microbiol Methods 2009, 78:79-85.
  • [35]Tyurin M, Padda R, Huang KX, Wardwell S, Caprette D, Bennett GN: Electrotransformation of Clostridium acetobutylicum ATCC 824 using high-voltage radio frequency modulated square pulses. J Appl Microbiol 2000, 88:220-227.
  • [36]Holo H, Nes IF: High-frequency transformation, by electroporation, of Lactococcus lactis subsp cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 1989, 55:3119-3123.
  • [37]Lee SH, Cheung M, Irani V, Carroll JD, Inamine JM, Howe WR, Maslow JN: Optimization of electroporation conditions for Mycobacterium avium. Tuberculosis 2002, 82:167-174.
  • [38]Rodriguez MC, Alegre MT, Mesas JM: Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation. Plasmid 2007, 58:44-50.
  • [39]Zhang HH, Li YT, Chen XM, Sheng HM, An LZ: Optimization of electroporation conditions for Arthrobacter with plasmid PART2. J Microbiol Methods 2011, 84:114-120.
  • [40]Assad-Garcia JS, Bonnin-Jusserand M, Garmyn D, Guzzo J, Alexandre H, Grandvalet C: An improved protocol for electroporation of Oenococcus oeni ATCC BAA 1163 using ethanol as immediate membrane fluidizing agent. Lett Appl Microbiol 2008, 47:333-338.
  • [41]Sharma AD, Singh J, Gill PK: Ethanol mediated enhancement in bacterial transformation. Electron J Biotechnol 2007, 10:166-168.
  • [42]Baskaran S, Ahn HJ, Lynd LR: Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 1995, 11:276-281.
  • [43]Tomas CA, Beamish J, Papoutsakis ET: Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 2004, 186:2006-2018.
  • [44]Allen SP, Blaschek HP: Electroporation-induced transformation of intact cells of Clostridium perfringens. Appl Environ Microbiol 1988, 54:2322-2324.
  • [45]Nakotte S, Schaffer S, Bohringer M, Durre P: Electroporation of, plasmid isolation from and plasmid conservation in Clostridium acetobutylicum DSM 792. Appl Microbiol Biotechnol 1998, 50:564-567.
  • [46]Zhou YT, Johnson EA: Genetic-transformation of Clostridium botulinum Hall A by electroporation. Biotechnol Lett 1993, 15:121-126.
  • [47]Shao L, Hu S, Yang Y, Gu Y, Chen J, Jiang W, Yang S: Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 2007, 17:963-965.
  • [48]Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP: The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 2010, 80:49-55.
  • [49]Tummala SB, Welker NE, Papoutsakis ET: Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 1999, 65:3793-3799.
  • [50]Guss AM, Olson DG, Caiazza NC, Lynd LR: Dcm methylation is detrimental to plasmid transformation in Clostridium thermocellum. Biotechnol Biofuels 2012, 5:1-6. BioMed Central Full Text
  • [51]Buckley ND, Vadeboncoeur C, LeBlanc DJ, Lee LN, Frenette M: An effective strategy, applicable to Streptococcus salivarius and related bacteria, to enhance or confer electroporation competence. Appl Environ Microbiol 1999, 65:3800-3804.
  • [52]Framson PE, Nittayajarn A, Merry J, Youngman P, Rubens CE: New genetic techniques for group B streptococci: High-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. Appl Environ Microbiol 1997, 63:3539-3547.
  • [53]Helmark S, Hansen ME, Jelle B, Sorensen KI, Jensen PR: Transformation of Leuconostoc carnosum 4010 and evidence for natural competence of the organism. Appl Environ Microbiol 2004, 70:3695-3699.
  • [54]McDonald IR, Riley PW, Sharp RJ, McCarthy AJ: Factors affecting the electroporation of Bacillus subtilis. J Appl Bacteriol 1995, 79:213-218.
  • [55]Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M: Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. J Appl Microbiol 2009, 106:1849-1858.
  • [56]Turgeon N, Laflamme C, Ho J, Duchaine C: Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. J Microbiol Methods 2006, 67:543-548.
  • [57]Hammes W, Schleife K, Kandler O: Mode of action of glycine on biosynthesis of peptidoglycan. J Bacteriol 1973, 116:1029-1053.
  • [58]Marvaud JC, Eisel U, Binz T, Niemann H, Popoff MR: TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to BotR. Infect Immun 1998, 66:5698-5702.
  • [59]Oultram JD, Loughlin M, Swinfield TJ, Brehm JK, Thompson DE, Minton NP: Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation. FEMS Microbiol Lett 1988, 56:83-88.
  • [60]Powell IB, Achen MG, Hillier AJ, Davidson BE: A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl Environ Microbiol 1988, 54:655-660.
  • [61]Park SF, Stewart G: High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 1990, 94:129-132.
  • [62]Berthier F, Zagorec M, ChampomierVerges M, Ehrlich SD, MorelDeville F: Efficient transformation of Lactobacillus sake by electroporation. Microbiology-(UK) 1996, 142:1273-1279.
  • [63]Ingram LO: Microbial tolerance to alcohols - Role of the cell membrane. Trends Biotechnol 1986, 4:40-44.
  • [64]Kundu S, Ghose TK, Mukhopadhyay SN: Bioconversion of cellulose into ethanol by Clostridium thermocellum - Product inhibition. Biotechnol Bioeng 1983, 25:1109-1126.
  • [65]Lunnen KD, Barsomian JM, Camp RR, Card CO, Chen SZ, Croft R, Looney MC, Meda MM, Moran LS, Nwankwo DO: Cloning Type-II restriction and modification genes. Gene 1988, 74:25-32.
  • [66]Zhao YS, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN: Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2003, 69:2831-2841.
  • [67]Awang GM, Jones GA, Ingledew WM: The acetone-butanol-ethanol fermentation. CRC Crit Rev Microbiol 1988, 15:S33-S67.
  • [68]Kell DB, Peck MW, Rodger G, Morris JG: On the permeability to weak acids and bases of the cytoplasmic membrane of Clostridium pasteurianum. Biochem Biophys Res Commun 1981, 99:81-88.
  • [69]Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: A laboratory manual. In. 2 edition. Cold Spring Harbor Press: Cold Spring Harbor; 1989.
  • [70]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97:6640-6645.
  文献评价指标  
  下载次数:38次 浏览次数:35次