期刊论文详细信息
BioMedical Engineering OnLine
Ventilation distribution in rats: Part 2 – A comparison of electrical impedance tomography and hyperpolarised helium magnetic resonance imaging
Kimble R Dunster2  Marlies EJ Friese1  John F Fraser2  Graham J Galloway1  Gary J Cowin1  Andreas Schibler2 
[1] Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
[2] Medical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
关键词: Functional lung imaging;    Ventilation distribution;    Hyperpolarized helium magnetic resonance lmaging;    Electrical impedance tomography;   
Others  :  798013
DOI  :  10.1186/1475-925X-11-68
 received in 2012-02-14, accepted in 2012-08-22,  发布年份 2012
PDF
【 摘 要 】

Background

Hyperpolarised helium MRI (He3 MRI) is a new technique that enables imaging of the air distribution within the lungs. This allows accurate determination of the ventilation distribution in vivo. The technique has the disadvantages of requiring an expensive helium isotope, complex apparatus and moving the patient to a compatible MRI scanner. Electrical impedance tomography (EIT) a non-invasive bedside technique that allows constant monitoring of lung impedance, which is dependent on changes in air space capacity in the lung. We have used He3MRI measurements of ventilation distribution as the gold standard for assessment of EIT.

Methods

Seven rats were ventilated in supine, prone, left and right lateral position with 70% helium/30% oxygen for EIT measurements and pure helium for He3 MRI. The same ventilator and settings were used for both measurements. Image dimensions, geometric centre and global in homogeneity index were calculated.

Results

EIT images were smaller and of lower resolution and contained less anatomical detail than those from He3 MRI. However, both methods could measure positional induced changes in lung ventilation, as assessed by the geometric centre. The global in homogeneity index were comparable between the techniques.

Conclusion

EIT is a suitable technique for monitoring ventilation distribution and inhomgeneity as assessed by comparison with He3 MRI.

【 授权许可】

   
2012 Dunster et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706093813272.pdf 694KB PDF download
Figure 4. 17KB Image download
Figure 3. 51KB Image download
Figure 2. 25KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Milic-Emili J, Henderson JA, Dolovich MB, Trop D, Kaneko K: Regional distribution of inspired gas in the lung. J Appl Physiol 1966, 21:749-759.
  • [2]Moller HE, Chen XJ, Saam B, Hagspiel KD, Johnson GA, Altes TA, de Lange EE, Kauczor HU: MRI of the lungs using hyperpolarized noble gases. Magn Reson Med 2002, 47:1029-1051.
  • [3]Ruppert K, Brookeman JR, Hagspiel KD, Mugler JP 3rd: Probing lung physiology with xenon polarization transfer contrast (XTC). Magn Reson Med 2000, 44:349-357.
  • [4]Crawford AB, Makowska M, Paiva M, Engel LA: Convection- and diffusion-dependent ventilation maldistribution in normal subjects. J Appl Physiol 1985, 59:838-846.
  • [5]Forkert L, Wood LD, Cherniack RM: Effect of gas density on dynamic pulmonary compliance. J Appl Physiol 1975, 39:906-910.
  • [6]Dunster KR, Friese M, Fraser JF, Cowin GJ, Schibler A: Ventilation distribution in rats: Part I - The effect of gas composition as measured with electrical impedance tomography. BioMedical Engineering OnLine 2012, 11:64. BioMed Central Full Text
  • [7]Bodenstein M, David M, Markstaller K: Principles of electrical impedance tomography and its clinical application. Crit Care Med 2009, 37:713-724.
  • [8]Rooney D, Friese M, Fraser JF KRD, Schibler A: Gravity-dependent ventilation distribution in rats measured with electrical impedance tomography. Physiol Meas 2009, 30:1075-1085.
  • [9]Hedlund LW, Cofer GP, Owen SJ, Allan Johnson G: MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging 2000, 18:753-759.
  • [10]Hahn G, Dudykevych T, Frerichs I, Hellige G: EIT System for clinical and space applications. Proceedings of the 2nd European Medical and Biological Engineering Conference, Vienna, Austria, Dec 04-08, 2002 IFMBE Proceedings Series 2002, 3:110-111.
  • [11]Rasband W: ImageJ.  , Bethesda, Maryland, USA; 2009. [National Institutes of Health] http://rsbinfonihgov/ij/ webcite
  • [12]Frerichs I, Dargaville PA, van Genderingen H, Morel DR, Rimensberger PC: Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 2006, 174:772-779.
  • [13]Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J: Evaluation of an electrical impedance tomography-based Global Inhomogeneity Index for pulmonary ventilation distribution. Intensive Care Med 2009, 35:1900-1906.
  • [14]Hahn G, Dudykevych T, Frerichs I, Hellige G: EIT System for clinical and space applications. Proc 2nd Eur Med Biol Eng Conf 2002, 3:110-111. Vienna, Austria, Dec 04–08, 2002 IFMBE Proceedings Series
  • [15]Gibson A, Bayford R, Holder D: Two-dimensional finite element modelling of the neonatal head. Physiol Meas 2000, 21:45-52.
  • [16]Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y: Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 1997, 83:1762-1767.
  • [17]Wrigge H, Zinserling J, Muders T, Varelmann D, Gunther U, von der Groeben C, Magnusson A, Hedenstierna G, Putensen C: Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 2008, 36:903-909.
  文献评价指标  
  下载次数:39次 浏览次数:8次