会议论文详细信息
4th International Workshop on New Computational Methods for Inverse Problems
Inversion without Explicit Jacobian Calculations in Electrical Impedance Tomography
物理学;计算机科学
Fouchard, A.^1,2 ; Bonnet, S.^1 ; Hervé, L.^1 ; David, O.^2
CEA, Leti, MINATEC Campus, 17 rue des Martyrs, Grenoble, Cedex 9
F38054, France^1
Université Joseph Fourier, Grenoble Institute of Neuroscience, Bâtiment E.J. Safra, La Tronche
38700, France^2
关键词: Computational burden;    Conductivity distributions;    Efficient implementation;    Electrical impe dance tomography (EIT);    Electrical impedance tomography;    Electrical measurement;    Jacobian calculations;    Preconditioned conjugate gradient;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/542/1/012002/pdf
DOI  :  10.1088/1742-6596/542/1/012002
学科分类:计算机科学(综合)
来源: IOP
PDF
【 摘 要 】

Electrical impedance tomography (EIT) is the inverse problem of finding the internal conductivity distribution of a medium given boundary electrical measurements performed via an electrode array onto its surface. Conventional inversion schemes adopt Tikhonov regularized Newton-type methods. Following a transport back-transport approach, we develop in this work an adjoint approach which allows reducing computational burden in enabling inversion without explicit Jacobian calculation. Forward and back-projection operators are defined from potential gradients, along with their efficient implementation. These derivations allow the transparent use of inversion algorithms. We first check the implementation of operators. We then evaluate how reconstructions perform on simulated noisy data using a preconditioned conjugate gradient. We eventually practice our inversion framework on experimental data acquired in vitro from a saline phantom.

【 预 览 】
附件列表
Files Size Format View
Inversion without Explicit Jacobian Calculations in Electrical Impedance Tomography 1311KB PDF download
  文献评价指标  
  下载次数:14次 浏览次数:26次