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Abstract. Electrical impedance tomography (EIT) is the inverse problem of finding the 

internal conductivity distribution of a medium given boundary electrical measurements 

performed via an electrode array onto its surface. Conventional inversion schemes adopt 

Tikhonov regularized Newton-type methods. Following a transport back-transport approach, 

we develop in this work an adjoint approach which allows reducing computational burden in 

enabling inversion without explicit Jacobian calculation. Forward and back-projection 

operators are defined from potential gradients, along with their efficient implementation. These 

derivations allow the transparent use of inversion algorithms. We first check the 

implementation of operators. We then evaluate how reconstructions perform on simulated 

noisy data using a preconditioned conjugate gradient. We eventually practice our inversion 

framework on experimental data acquired in vitro from a saline phantom. 

1. Introduction 

Biological tissues and fluids exhibit specific electrical properties, conductivity   and permittivity  , 
which may be used to infer their internal structure. Medical Electrical Impedance Tomography (EIT) 

is a soft-field, non-invasive imaging modality, which aims at reconstructing the distribution of internal 

electrical properties from boundary electrical measurements [1]. It works by injecting known low 

intensity alternating electrical currents through the body via an array of surface electrodes. The 

distribution of admittivity        , at frequency  , dictates internal current flows. Resulting 

voltages are measured between several pairs of electrodes. 

EIT uses low frequency electrical currents from 1Hz to 10MHz. In this frequency range, current 

flows cannot be confined to a plane by a set of external electrodes; all measurements may be affected 

by a change in conductivity anywhere in the domain, not only those in the ray path. Hence, electrical 

imaging requires three dimensional modelling and needs adequate computational processing [2]. 

Using electrical measurements, reconstruction of admittivity distribution involves a two-step 

mathematical framework. The forward problem consists in building a numerical model able to predict 

expected measurements at the electrodes, given a distribution of admittivity. The inverse problem then 

estimates internal electrical properties through an optimization function which adjusts admittivity 

distribution in order to minimise the distance between measurements and calculated values. 

Because the EIT inverse problem is non-linear and ill-posed, it cannot be easily solved. The 

standard reconstruction approach uses a family of regularized Newton-type methods [2] where 
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admittivity distribution is represented using a piecewise constant model over voxels. Forward problem 

is linearized at some initial admittivity estimate and a Jacobian matrix is constructed. This matrix, also 

called sensitivity matrix, relates the admittivity of each internal voxel to the boundary measurements. 

Then, admittivity reconstruction involves the inversion of the ill-conditioned Jacobian matrix through 

generalized Tikhonov regularization. This requires inverting large linear systems of size equal to the 

number of voxels in the mesh times the number of measurements. 

In order to optimise computational efficiency by avoiding explicit calculations of Jacobian, we 

propose here a transport back-transport method [3] that defines an adjoint reconstruction framework 

for EIT. Matrices involved in transport and back-transport operations present a reduced size by a 

factor of the number of electrodes, typically 16 or more in modern EIT systems. This approach opens 

new opportunities to use a wide range of inversion algorithms for EIT. It also offers a way to reduce 

complexity of EIT calculations. 

In this paper, we focus only on conductivity reconstructions. The derivation of the forward and 

back-projection operators is presented. The reconstruction framework is then evaluated using the case 

of a 2D preconditioned conjugate gradient (PCG) inversion scheme. Conductivity reconstructions are 

performed against experimental data acquired in vitro on a saline phantom. 

2. Methods 

2.1. Sensitivity calculations 

Optimization based methods are used in EIT to infer internal electrical property distribution. They 

require determining the derivative of the voltage measurements with respect to a conductivity 

parameter. The Jacobian matrix, or sensitivity matrix, contains all these partial derivatives. 

The classic estimation of the Jacobian is based on the perturbation approach where two 

configurations are considered (Figure 1). The first configuration indexed by   is the actual 

measurement configuration, in which the source   is used. The second configuration indexed by   is a 

virtual measurement configuration in which source and detector have been interchanged. 

 
Figure 1. Actual (left) and virtual (right) measurement configurations for source and detector 

Suppose the domain under study has been meshed into a partition of    elements. The perturbation 

of the voltage    , measured in the situation where the source is   and detector  , due to a localized 

perturbation of conductivity in the element   , for a fixed injected current of amplitude     is [4]: 

       
    

   
 
  

   
∫   (  )    (  )   
  

 (1) 

in which   (  )   (  ) are the potential gradients, respectively in actual and virtual configurations. 

With   electrodes, when rotating detector, we usually count E measurements per injection 

configuration: considering all measurements, the Jacobian matrix      has dimension      . 

Jacobian coefficients are calculated considering a piecewise linear potential, which leads to 

constant potential gradients per element. Hence, equation (1) reduces to: 

       
 |  |

   
   ( 

 )     ( 
 ) (2) 

where |  | is the volume of element    in 3D. Potential gradients over each element of the mesh     

can be computed from standard finite element derivation of EIT physics [5]. 
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2.2. Adjoint reconstruction framework 

In this work, we follow a transport back-transport approach [3] which uses adjoint fields for 

reconstruction. Starting from an initial guess of conductivity, the framework calculates the difference 

between the computed and the actual measurements by solving a direct transport problem, and then 

transports these residuals back into the medium by solving a corresponding adjoint transport problem. 

In order to avoid explicit calculations of the Jacobian and its adjoint, the Jacobian matrix   may be 

factorized under the form of equation (3) with matrices     
       

        , given in equation (4), 

containing potential gradients relative to coordinate   , respectively for source injection configurations 

and virtual detector injection configurations. 

        ∑     
      

  
   (3) 

     
       (√

| |

   
) [

     ( 
 )       ( 

 )

   
      ( 

 )        ( 
 )
]  (4) 

This factorization leads to express the direct and adjoint transport operators without explicit 

calculations of Jacobians but only of matrices     
   and     

  , possibly equal. 

2.2.1. Direct transport: forward operator The direct transport problem predicts expected 

measurements given a map of conductivity. It performs the operation       . From the perturbation 

formula of equation (2) under the assumption of piecewise linear potential, the operation can be 

written in the formalism which uses gradient matrices, with        : 

        ∑ ∑     
      

         (5) 

2.2.2. Adjoint transport: back-projection operator The adjoint transport problem transports back to 

the image    the residuals        between computed and measured values. It performs the adjoint 

operation         ( ). Using gradient matrices, it follows: 

      ∑ ∑ ∑     
      

           (6) 

2.3. Implementation of inversion 

The adjoint reconstruction framework depicted in the previous section allows using numerous 

inversion algorithms. In this work, standard PCG algorithm is used. CG features intrinsic regularizing 

properties and offers a good compromise between robustness, convergence, computation and image 

quality. Left preconditioning is used to weight measurements by the noise covariance matrix. 

Numerical simulations are conducted using standard Finite Element Method in EIT with the 

Complete Electrode Model [1]. Custom Matlab routines adapted from the EIDORS library [6] allow 

the calculations of potential gradients along each mesh element and the implementations of forward 

and back-projection operators. 

2.4. Experimental device 

  
Figure 2. Experimental phantom with centred (left) and non-centred (right) inhomogeneity 
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Experimental measurements are performed on a saline phantom of 4cm diameter featuring 14 equally-

spaced copper electrodes (Figure 2) with a custom-built EIT system [7]. Measurements are carried out 

using a four-electrode method with an injected current of 100µApp at 98kHz. Inhomogeneities are 

created by the presence of metallic cylinders of either 1cm or 5mm diameter, i.e.   ⁄  or   ⁄  of 

phantom diameter. A 5mm diameter hollow insulating cylinder is also used. 

2.5. Reconstruction approach 

Numerical derivations depicted in previous sections are first validated on simple test cases in 2D 

before considering image reconstruction of simulated and experimental measurements. A 2D mesh 

consisting of          elements will be used throughout the rest of this paper. 

2.5.1. Implementation validation Two reference configurations, similar to the ones in Figure 2, are 

used to validate both forward and back-projection implementations. Background conductivity is 1S/m. 

Inclusions either centred or decentred exhibit a conductivity contrast of 0.1. Using the EIDORS library 

[6], the Jacobian   is calculated along with the residuals, obtained by inversion of the FEM admittance 

matrix. Proposed operators can be checked by comparing their results with the application of   or   . 

2.5.2. Simulated noisy measurements Difference reconstructions are conducted on simulated 

numerical measurements, perturbed with a 5% additive Gaussian noise on every measurement. These 

reconstructions allow studying the reconstruction framework behavior in presence of noise. The mesh 

used for the simulation of measurements (18,647 elements) is different from the mesh used for 

reconstructions (6,713 elements), in order to avoid committing an inverse crime [2]. 

2.5.3. Experimental measurements Difference reconstructions are performed given sets of data 

acquired from the experimental device. Data collection is performed 10 times in order to evaluate the 

mean value of measurements and their variance. The latter is incorporated in the left preconditioner. 

3. Results 

3.1. Validation of reconstruction framework implementation 

Comparison between calculated gradients and theoretical ones, for a given potential distribution 

 (     )   
 (  

    
 ), shows a mean value of 1 and a standard deviation of 0.05. This indicates that 

the implementation of elemental gradient calculations works fine. Both projection and back-projection 

ratios exhibit no discrepancies (mean value of 1 and corresponding standard deviation inferior to 

     ), which validates the right implementation of corresponding operators. 

3.2. 2D simulation results 

Difference reconstructions are performed against simulated measurements (Figure 3). 

   
Figure 3. Difference reconstruction of simulated measurements; 

left: conductivity to be imaged; centre: no noise; right: 5% additive Gaussian noise 

Without noise, the PCG algorithm performs well to reconstruct both position and conductivity 

contrast of inclusions. With 14 electrodes, the geometrical details of the rectangular inclusion cannot 
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be recovered, it is a classical behaviour of EIT [1]. In presence of noisy data, the PCG algorithm is 

able to detect the inclusions along with their conductivity contrast. But, spatial resolution has been lost 

in the reconstruction process, which is also a known feature of EIT [1]. Future developments of the 

adjoint framework presented in this work might consider inversion algorithms that favour sparse 

solutions. 

The back-projection operator readily offers determination of sensitivity maps for any desired 

source-detector configuration (Figure 4). 

   
Figure 4. Sensitivity maps for the injection configuration involving electrodes 1 and 2; 

Measurement configuration involve electrodes 4 and 8 (left), electrodes 7 and 11 (right) 

These maps present both positive sensitivity areas (yellow, red) and negative ones (blue). The latter 

explains the lack of spatial resolution put forward in previous reconstruction in the presence of noise. 

3.3. Phantom experiments 

Difference reconstructions from experimental data are now performed. Experiments are first led with 

conductive inclusion (  ⁄  of phantom diameter) featuring a contrast of     with the saline solution 

background (Figure 5).  

   
Figure 5. Difference reconstructions from experimental measurements on conductive inclusion; 

left: centred inclusion; right: non-centred inclusion; black circles: true position of inclusion 

The PCG algorithm and subsequent forward and back-projection operators perform well in 

experimental conditions, with an estimated maximum noise of 5% in the corresponding measurements. 

Reconstruction drift in position seems to be handled quite properly. 

Experiments are then conducted with two conductive inclusions (  ⁄  and   ⁄  of phantom 

diameter) or with a hollow insulating cylinder (  ⁄   of phantom diameter) (Figure 6). 

   
Figure 6. Difference reconstructions from experimental measurements; 

left: conductive inclusions; right: hollow insulating inclusion; circles: true position of inclusions 
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The framework behaves properly on both conductivity distributions. Recovering an inclusion 

whose dimensions equal   ⁄  of phantom diameter almost matches the spatial resolution limit of 14 

electrode EIT. 

Sharp contrasts are not recovered in this work since it requires using non-linear inversion 

algorithms. 

4. Discussion 
In this paper, we presented an inversion scheme which does not require explicit calculations of 

Jacobian. Instead, we practice a transport back-transport framework using an adjoint method and 

define two operators: forward and back-projection. Both can be efficiently determined from elemental 

gradient matrices detailed in previous sections. Such an approach allows using a wide range of 

inversion algorithms in the reconstruction process of EIT. 

The validity of the implementation we propose was first checked. We then ran 2D difference 

reconstructions on simulated numerical data in which a 5% additive Gaussian noise was added. 

Classical behaviours of EIT reconstruction were observed, namely the loss of spatial resolution with 

noisy measurements. Eventually, we tested the method on experimental data acquired in vitro on a 

saline phantom. 

In this scope, the framework allows seamlessly to determine estimated conductivity profiles and 

measurement configuration sensitivity maps. With the 14 electrode phantom used in this work, gains 

in matrices size used in calculations involve a reduction of 14 in one dimension, i.e. manipulated 

matrices were of size 6,713 14 instead of standard 6,713 14². 

During the inversion process, the PCG algorithm easily allows incorporating prior information 

about the solution. In this work, measurement variance was incorporated in the left preconditioner. 

Consequent images prove to be qualitatively superior to the ones obtained using conventional 

regularization schemes, i.e. generalized Tikhonov. This aspect deserves more investigation. 

Further studies will translate these developments in 3D and work on recovering more complicated 

conductivity distributions. Future developments of the adjoint framework presented in this work might 

consider reconstruction processes that favour sparse solutions and use non-linear inversion algorithms. 
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