期刊论文详细信息
BMC Biophysics
Copper-free click chemistry for attachment of biomolecules in magnetic tweezers
Jorine M. Eeftens1  Jaco van der Torre1  Daniel R. Burnham1  Cees Dekker1 
[1] Department of Bionanoscience, Delft University of Technology, Kavli Institute of Nanoscience Delft, Delft, The Netherlands
关键词: DNA immobilization;    Surface chemistry;    SPAAC reactions;    Copper-free click chemistry;    Magnetic tweezers;   
Others  :  1234095
DOI  :  10.1186/s13628-015-0023-9
 received in 2015-04-24, accepted in 2015-09-16,  发布年份 2015
PDF
【 摘 要 】

Background

Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces, since the molecule of interest can detach from the attachment points at the surface or the bead. Whereas many recipes for attachment of biopolymers have been developed, most methods do not suffice, as the molecules break at high force, or the attachment chemistry leads to nonspecific cross reactions with proteins.

Results

Here, we demonstrate a novel attachment method using copper-free click chemistry, where a DBCO-tagged DNA molecule is bound to an azide-functionalized surface. We use this new technique to covalently attach DNA to a flow cell surface. We show that this technique results in covalently linked tethers that are torsionally constrained and withstand very high forces (>100pN) in magnetic tweezers.

Conclusions

This novel anchoring strategy using copper-free click chemistry allows to specifically and covalently link biomolecules, and conduct high-force single-molecule experiments. Excitingly, this advance opens up the possibility for single-molecule experiments on DNA-protein complexes and molecules that are taken directly from cell lysate.

【 授权许可】

   
2015 Eeftens et al.

【 预 览 】
附件列表
Files Size Format View
20151128013341717.pdf 1317KB PDF download
Fig. 5. 35KB Image download
Fig. 4. 18KB Image download
Fig. 3. 41KB Image download
Fig. 2. 44KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008; 5:491-505.
  • [2]Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol. 2006; 7:265-75.
  • [3]Wang JH-C, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol. 2006; 5:1-16.
  • [4]Rape AD, Guo W-H, Wang Y-L. The regulation of traction force in relation to cell shape and focal adhesions. Biomaterials. 2011; 32:2043-51.
  • [5]Yin H, Wang MD, Svoboda K, Landick R, Block SM, Gelles J. Transcription Against an Applied Force. Science. 1995; 270(80-):1653-1657.
  • [6]Chemla YR, Aathavan K, Michaelis J, Grimes S, Jardine PJ, Anderson DL, Bustamante C. Mechanism of force generation of a viral DNA packaging motor. Cell. 2005; 122:683-92.
  • [7]Nicklas RB. The forces that move chromosomes in mitosis. Annu Rev Biophys Biophys Chem. 1988; 17:431-49.
  • [8]Nicklas RB. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol. 1983; 97:542-8.
  • [9]Jannink G, Duplantier B, Sikorav JL. Forces on chromosomal DNA during anaphase. Biophys J. 1996; 71:451-65.
  • [10]Brock J, Bloom K. A chromosome breakage assay to monitor mitotic forces in budding yeast. J Cell Sci. 1994; 107:891-902.
  • [11]De Vlaminck I, Vidic I, van Loenhout MTJ, Kanaar R, Lebbink JHG, Dekker C. Torsional regulation of hRPA-induced unwinding of double-stranded DNA. Nucleic Acids Res. 2010; 38:4133-42.
  • [12]Xiao B, Johnson R, Marko J. Modulation of HU–DNA interactions by salt concentration and applied force. Nucleic Acids Res. 2010; 38(18):6176-6185.
  • [13]Revyakin A, Ebright RH, Strick TR. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc Natl Acad Sci U S A. 2004; 101:4776-80.
  • [14]Vlijm R, Smitshuijzen JSJ, Lusser A, Dekker C. NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. PLoS One. 2012; 7:e46306.
  • [15]Van Loenhout MTJ, van der Heijden T, Kanaar R, Wyman C, Dekker C. Dynamics of RecA filaments on single-stranded DNA. Nucleic Acids Res. 2009; 37:4089-99.
  • [16]Vlijm R, Lee M, Lipfert J, Lusser A, Dekker C, Dekker NH. Nucleosome Assembly Dynamics Involve Spontaneous Fluctuations in the Handedness of Tetrasomes. Cell Rep. 2015; 10:216-225.
  • [17]De Odrowaz PM, Czuba P, Targosz M, Burda K, Szymoński M. Dynamic force measurements of avidin-biotin and streptavdin-biotin interactions using AFM. Acta Biochim Pol. 2006; 53:93-100.
  • [18]Janissen R, Berghuis B a, Dulin D, Wink M, van Laar T, Dekker NH: Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments. Nucleic Acids Res 2014:1–10
  • [19]Neuert G, Albrecht C, Pamir E, Gaub HE. Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Lett. 2006; 580:505-9.
  • [20]Walsh MK, Wang X, Weimer BC. Optimizing the immobilization of single-stranded DNA onto glass beads. J Biochem Biophys Methods. 2001; 47:221-231.
  • [21]Janissen R, Oberbarnscheidt L, Oesterhelt F. Optimized straight forward procedure for covalent surface immobilization of different biomolecules for single molecule applications. Colloids Surf B Biointerfaces. 2009; 71:200-7.
  • [22]Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem. 2011; 22:1239-48.
  • [23]Riener CK, Kienberger F, Hahn CD, Buchinger GM, Egwim IOC, Haselgrübler T, Ebner A, Romanin C, Klampfl C, Lackner B, Prinz H, Blaas D, Hinterdorfer P, Gruber HJ. Heterobifunctional crosslinkers for tethering single ligand molecules to scanning probes. Anal Chim Acta. 2003; 497:101-114.
  • [24]Grandbois M. How Strong Is a Covalent Bond? Science. 1999; 283(80-):1727-1730.
  • [25]Best RB, Paci E, Hummer G, Dudko OK. Pulling direction as a reaction coordinate for the mechanical unfolding of single molecules. J Phys Chem B. 2008; 112:5968-76.
  • [26]Dufrêne YF, Evans E, Engel A, Helenius J, Gaub HE, Müller DJ. Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods. 2011; 8:123-7.
  • [27]Sletten EM, Bertozzi CR. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl. 2009; 48:6974-98.
  • [28]Agard NJ, Prescher J a, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004; 126:15046-7.
  • [29]De Vlaminck I, Henighan T, van Loenhout MTJ, Burnham DR, Dekker C. Magnetic forces and DNA mechanics in multiplexed magnetic tweezers. PLoS One. 2012; 7:e41432.
  • [30]Te Velthuis AJW, Kerssemakers JWJ, Lipfert J, Dekker NH. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J. 2010; 99:1292-302.
  • [31]Van Loenhout MTJ, Kerssemakers JWJ, De Vlaminck I, Dekker C. Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys J. 2012; 102:2362-71.
  • [32]Lipfert J, Hao X, Dekker NH. Quantitative modeling and optimization of magnetic tweezers. Biophys J. 2009; 96:5040-9.
  • [33]Wong WP, Halvorsen K. The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt Express. 2006; 14:12517-31.
  • [34]Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science. 1996; 271(80-):795-799.
  • [35]Léger JF, Romano G, Sarkar A, Robert J, Bourdieu L, Chatenay D, Marko JF. Structural Transitions of a Twisted and Stretched DNA Molecule. Phys Rev Lett. 1999; 83:1066-1069.
  • [36]Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev. 2010; 39:1272.
  • [37]Link AJ, Vink MKS, Agard NJ, Prescher JA, Bertozzi CR, Tirrell DA. Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids. Proc Natl Acad Sci U S A. 2006; 103:10180-5.
  • [38]Baskin JM, Prescher J a, Laughlin ST, Agard NJ, Chang PV, Miller I a, Lo A, Codelli J a, Bertozzi CR. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci U S A. 2007; 104:16793-7.
  • [39]Qiu J, El-Sagheer AH, Brown T. Solid phase click ligation for the synthesis of very long oligonucleotides. Chem Commun (Camb). 2013; 49:6959-61.
  • [40]Heuer-Jungemann A, Kirkwood R, El-Sagheer AH, Brown T, Kanaras AG. Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale. 2013; 5:7209-12.
  • [41]Hinterdorfer P, Gruber HJ, Kienberger F, Kada G, Riener C, Borken C, Schindler H. Surface attachment of ligands and receptors for molecular recognition force microscopy. Colloids Surfaces B Biointerfaces. 2002; 23:115-123.
  文献评价指标  
  下载次数:78次 浏览次数:14次