期刊论文详细信息
Animal Biotelemetry
Can accelerometry be used to distinguish between flight types in soaring birds?
H. J. Williams1  E. L. C. Shepard1  O. Duriez3  S. A. Lambertucci2 
[1] Department of Bioscience, College of Science, Swansea University, Swansea SA2 8PP, UK
[2] Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, Bariloche, 8400, Argentina
[3] CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, Montpellier Cedex 5, 34293, France
关键词: KNN;    Daily Diary;    Centripetal acceleration;    Pulling-g;    Magnetometry;    Acceleration;    Soaring flight;   
Others  :  1233170
DOI  :  10.1186/s40317-015-0077-0
 received in 2015-01-28, accepted in 2015-01-28,  发布年份 2015
PDF
【 摘 要 】

Background

Accelerometry has been used to identify behaviours through the quantification of body posture and motion for a range of species moving in different media. This technique has not been applied to flight behaviours to the same degree, having only been used to distinguish flapping from soaring flight, even though identifying the type of soaring flight could provide important insights into the factors underlying movement paths in soaring birds. This may be due to the complexities of interpreting acceleration data, as movement in the aerial environment may be influenced by phenomena such as centripetal acceleration (pulling-g). This study used high-resolution movement data on the flight of free-living Andean condors (Vultur gryphus) and a captive Eurasian griffon vulture (Gyps fulvus) to examine the influence of gravitational, dynamic and centripetal acceleration in different flight types. Flight behaviour was categorised as thermal soaring, slope soaring, gliding and flapping, using changes in altitude and heading from magnetometry data. We examined the ability of the k-nearest neighbour (KNN) algorithm to distinguish between these behaviours using acceleration data alone.

Results

Values of the vectorial static body acceleration (VeSBA) suggest that these birds experience relatively little centripetal acceleration in flight, though this varies between flight types. Centripetal acceleration appears to be of most influence during thermal soaring; consequently, it is not possible to derive bank angle from smoothed values of lateral acceleration. In contrast, the smoothed acceleration values in the dorso-ventral axis provide insight into body pitch, which varied linearly with airspeed. Classification of passive flight types via KNN was limited, with low accuracy and precision for soaring and gliding.

Conclusion

The importance of soaring was evident in the high proportion of time each bird spent in this flight mode (52.17–84.00 %). Accelerometry alone was limited in its ability to distinguish between passive flight types, though smoothed values in the dorso-ventral axis did vary with airspeed. Other sensors, in particular the magnetometer, provided powerful methods of identifying flight behaviour and these data may be better suited for automated behavioural identification. This should provide further insight into the type and strength of updraughts available to soaring birds.

【 授权许可】

   
2015 Williams et al.

【 预 览 】
附件列表
Files Size Format View
20151119010324996.pdf 1597KB PDF download
Fig.6. 35KB Image download
Fig.5. 16KB Image download
Fig.4. 31KB Image download
Fig.3. 24KB Image download
Fig.2. 40KB Image download
Fig.1. 30KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Ropert-Coudert Y, Wilson RP: Trends and perspectives in animal-attached remote sensing. Front Ecol Environ 2005, 3(8):437-444.
  • [2]McClune DW, Marks NJ, Wilson RP, Houghton JDR, Montgomery IW, McGowan NE, et al.: Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim Biotelemetry 2014, 2(5):1-6.
  • [3]Laich AG, Wilson RP, Quintana F, Shepard ELC: Identification of imperial cormorant Phalacrocorax atriceps behaviour using accelerometers. Endanger Species Res. 2009, 10:29-37.
  • [4]Watanabe S, Izawa M, Kato A, Ropert-Coudert Y, Naito Y: A new technique for monitoring the detailed behaviour of terrestrial animals: a case study with the domestic cat. Appl Anim Behav Sci 2005, 94(1–2):117-131.
  • [5]Yoda K, Naito Y, Sato K, Takahashi A, Nishikawa J, Ropert-Coudert Y, et al.: A new technique for monitoring the behaviour of free-ranging adélie penguins. J Exp Biol 2001, 204:685-690.
  • [6]Yoda K, Sato K, Niizuma Y, Kurita M, Bost C-A, Maho YL, et al.: Precise monitoring of porpoising behaviour of Adélie penguins determined using acceleration data loggers. J Exp Biol 1999, 202:3121-3126.
  • [7]Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W: From sensor data to animal behaviour: an oystercatcher example. PLoS One 2012, 7(5):e37997.
  • [8]Shepard ELC, Wilson RP, Quintana F, Gómez Laich A, Liebsch N, Albareda DA, et al.: Identification of animal movement patterns using tri-axial accelerometry. Endanger Species Res 2008, 10:47-60.
  • [9]Halsey LG, Shepard EL, Wilson RP: Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp Biochem Physiol A Mol Integr Physiol 2011, 158(3):305-314.
  • [10]Clark TD, Sandblom E, Hinch SG, Patterson DA, Frappell PB, Farrell AP: Simultaneous biologging of heart rate and acceleration, and their relationships with energy expenditure in free-swimming sockeye salmon (Oncorhynchus nerka). J Comp Physiol [B] 2010, 180(5):673-684.
  • [11]Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, et al.: Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 2006, 75(5):1081-1090.
  • [12]Iwata T, Sakamoto KQ, Takahashi A, Edwards EWJ, Staniland IJ, Trathan PN, et al.: Using a mandible accelerometer to study fine-scale foraging behavior of free-ranging Antarctic fur seals. Mar Mamm Sci 2012, 28(2):345-357.
  • [13]Wilson RP, Grundy E, Massy R, Soltis J, Tysse B, Holton M, et al.: Wild state secrets: ultra-sensitive measurement of micro-movement can reveal internal processes in animals. Front Ecol Environ 2014, 12(10):582-587.
  • [14]Duriez O, Kato A, Tromp C, Dell’Omo G, Vyssotski AL, Sarrazin F, et al.: How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures. PLoS One 2014, 9(1):e84887.
  • [15]Halsey LG, Portugal SJ, Smith JA, Murn CP, Wilson RP: Recording raptor behavior on the wing via accelerometry. J Field Ornithol 2009, 80(2):171-177.
  • [16]Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM: Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures. J Exp Biol 2012, 215(Pt 6):986-996.
  • [17]Shepard EL, Lambertucci SA, Vallmitjana D, Wilson RP: Energy beyond food: foraging theory informs time spent in thermals by a large soaring bird. PLoS One 2011, 6(11):e27375.
  • [18]Bohrer G, Brandes D, Mandel JT, Bildstein KL, Miller TA, Lanzone M, et al.: Estimating updraft velocity components over large spatial scales: contrasting migration strategies of golden eagles and turkey vultures. Ecol Lett 2012, 15(2):96-103.
  • [19]Pennycuick CJ: Bird flight performance: a practical calculation manual. Oxford University Press, New York; 1989.
  • [20]Shamoun-Baranes J, Bouten W, van Loon EE: Integrating meteorology into research on migration. Integr Comp Biol 2010, 50(3):280-292.
  • [21]Mandel JT, Bildstein KL, Bohrer G, Winkler DW: Movement ecology of migration in turkey vultures. PNAS 2008, 105(49):19102-19107.
  • [22]Lanzone MJ, Miller TA, Turk P, Brandes D, Halverson C, Maisonneuve C, et al.: Flight responses by a migratory soaring raptor to changing meteorological conditions. Biol Lett 2012, 8(5):710-713.
  • [23]Shamoun-Baranes J, Liechti O, Yom-Tov Y, Leshem Y: Using a convection model to predict altitudes of white stork migration over central Israel. Bound-Layer Meteorol 2003, 107:673-681.
  • [24]Bouten W, Baaij EW, Shamoun-Baranes J, Camphuysen KCJ: A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol 2012, 154(2):571-580.
  • [25]Sakamoto KQ, Takahashi A, Iwata T, Yamamoto T, Yamamoto M, Trathan PN: Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses. J Exp Biol 2013, 216(Pt 16):3175-3182.
  • [26]Reynolds KV, Thomas AL, Taylor GK: Wing tucks are a response to atmospheric turbulence in the soaring flight of the steppe eagle Aquila nipalensis. J R Soc Interface R Soc 2014, 11(101):20140645.
  • [27]Wilson RP, Shepard ELC, Liebsch N: Prying into the intimate details of animal lives: use of a daily diary on animals. Endanger Species Res 2008, 4:123-137.
  • [28]Shamoun-Baranes J, Bouten W, Camphuysen CJ, Baaij EW: Riding the tide: intriguing observations of gulls resting at sea during breeding. Ibis. 2011, 153:411-415.
  • [29]Pennycuick CJ: Gliding flight of the white-backed vulture Gyps africanus. J Exp Biol 1971, 55:13-38.
  • [30]Lentink D, Muller UK, Stamhuis EJ, de Kat R, van Gestel W, Veldhuis LL, et al.: How swifts control their glide performance with morphing wings. Nature 2007, 446(7139):1082-1085.
  • [31]Tucker VA: Gliding flight: speed and acceleration of ideal falcons during diving and pull out. J Exp Biol 1998, 201:403-414.
  • [32]Boslough MBE: Autonomous dynamic soaring platform for distributed mobile sensor arrays. Sandia National Laboratories, Washington; 2002.
  • [33]Clark CJ: Courtship dives of Anna’s hummingbird offer insights into flight performance limits. Proc Biol Sci R Soc 2009, 276(1670):3047-3052.
  • [34]Lambertucci SA, Alarcón PAE, Hiraldo F, Sanchez-Zapata JA, Blanco G, Donázar JA: Apex scavenger movements call for transboundary conservation policies. Biol Conserv 2014, 170:145-150.
  • [35]Shepard EL, Lambertucci SA: From daily movements to population distributions: weather affects competitive ability in a guild of soaring birds. J R Soc Interface R Soc 2013, 10(88):20130612.
  • [36]Ferguson-Lees J, Christie DA: Raptors of the world. Helm Identification Guides, London; 2001.
  • [37]Rappole JH, Tipton AR: New harness design for attachment of radio transmitters to small passerines (Nuevo Diseño de Arnés para Atar Transmisores a Passeriformes Pequeños). J Field Ornithol. 1991, 62(3):335-337.
  • [38]Pennycuick CJ: Soaring behaivour and performance of some east african birds, observed from a motor-glider. Ibis. 1971, 114:178-218.
  • [39]Soltis J, Wilson RP, Douglas-Hamilton I, Vollrath F, King LE, Savage A: Accelerometers in collars identify behavioral states in captive African elephants Loxodonta africana. Endanger Species Res 2012, 18(3):255-263.
  • [40]Resheff YS, Rotics S, Harel R, Spiegel O, Nathan R: AcceleRater: a web application for supervised learning of behaviour modes from acceleration measurements. Mov Ecol 2014, 2:27. BioMed Central Full Text
  • [41]Bidder OR, Campbell HA, Gomez-Laich A, Urge P, Walker J, Cai Y, et al.: Love thy neighbour: automatic animal behavioural classification of acceleration data using the K-nearest neighbour algorithm. PLoS One 2014, 9(2):e88609.
  • [42]Walker JS, Jones MW, Laramee RS, Holton MD, Shepard EL, Williams HJ et al. Prying into the intimate secrets of animal lives; software beyond hardware for comprehensive annotation in ‘Daily Diary’ tags. Mov Ecol. 2015. (In Press).
  • [43]Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, et al.: Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One 2009, 4(4):e5379.
  • [44]Sato K, Sakamoto KQ, Watanuki Y, Takahashi A, Katsumata N, Bost C-A, Weimerskirch H: Scaling of soaring seabirds and implications for flight abilities of giant pterosaurs. PLoS One 2009, 4(4):e5400.
  • [45]Shepard ELC, Wilson RP, Laich AG, Quintana F: Buoyed up and slowed down: speed limits for diving birds in shallow water. Aquat Biol 2010, 8:259-267.
  • [46]Shepard ELC, Wilson RP, Halsey LG, Quintana F, Gómez Laich A, Gleiss AC, et al.: Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 2008, 4:235-241.
  • [47]Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard EL, et al.: Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS One 2012, 7(2):e31187.
  • [48]Wilson JW, Mills MG, Wilson RP, Peters G, Mills ME, Speakman JR, et al.: Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey. Biol Lett 2013, 9(5):20130620.
  • [49]Nakagawa S, Schielzeth H: A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol Evol 2013, 4:133-142.
  • [50]Pennycuick CJ: Modelling the flying bird. Elsevier, Boston; 2008.
  • [51]Martiskainen P, Järvinen M, Skön J-P, Tiirikainen J, Kolehmainen M, Mononen J: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines. Appl Anim Behav Sci 2009, 119(1–2):32-38.
  文献评价指标  
  下载次数:50次 浏览次数:40次