| BMC Bioinformatics | |
| SPoRE: a mathematical model to predict double strand breaks and axis protein sites in meiosis | |
| Raphaël Champeimont2  Alessandra Carbone1  | |
| [1] Institut Universitaire de France, Paris 75005, France | |
| [2] CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris F-75006, France | |
| 关键词: Saccharomyces cerevisiae; Intergenic region; Modeling; Gene; Genome; 3D chromosomal structure; Recombination; | |
| Others : 1084442 DOI : 10.1186/s12859-014-0391-1 |
|
| received in 2014-08-27, accepted in 2014-11-19, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Meiotic recombination between homologous chromosomes provides natural combinations of genetic variations and is a main driving force of evolution. It is initiated via programmed DNA double-strand breaks (DSB) and involves a specific axial chromosomal structure. So far, recombination regions have been mainly determined by experiments, both expensive and time-consuming.
Results
SPoRE is a mathematical model that describes the non-uniform localisation of DSB and axis proteins sites, and distinguishes high versus low protein density. It is based on a combination of genomic signals, based on what is known from wet-lab experiments, whose contribution is precisely quantified. It models axis proteins accumulation at gene 5’-ends with a discrete approximation of their diffusion and convection along genes. It models DSB accumulation at approximated gene promoter positions with intergenic region length and GC-content. SPoRE can be used for prediction and it is parameterised in an obvious way that makes it easy to understand from a biological viewpoint.
Conclusions
When compared to Saccharomyces cerevisiae experimental data, SPoRE predicts axis protein and DSB positions with high sensitivity and precision, axis protein density with an average local correlation r=0.63 and DSB density with an average local correlation r=0.62. SPoRE outbreaks previous DSB predictors, which are based on nucleotide patterning, and it reaches 85% of success rate in DSB prediction compared to 54% obtained by available tools on a benchmarked dataset.
SPoRE is available at the address http://www.lcqb.upmc.fr/SPoRE/ webcite.
【 授权许可】
2014 Champeimont and Carbone; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150113161629713.pdf | 1198KB | ||
| Figure 2. | 59KB | Image | |
| Figure 4. | 75KB | Image | |
| Figure 3. | 54KB | Image | |
| Figure 2. | 76KB | Image | |
| Figure 1. | 53KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 2.
【 参考文献 】
- [1]Petes T: Meiotic recombination hot spots and cold spots. Nat Rev Genet 2001, 2(5):360-369. doi:10.1038/3507207
- [2]Kauppi L, Jeffreys A, Keeney S: Where the crossovers are: Recombination distributions in mammals. Nat Rev Genet 2004, 5(6):413-424. doi:10.1038/nrg134
- [3]Keeney S: Spo11 and the formation of dna double-strand breaks in meiosis. In Recombination and Meiosis. Genome Dynamics and Stability. Edited by Egel R, Lankenau D-H. Berlin, Heidelberg: Springer-Verlag, GmbH & Co; 2008:81–123.
- [4]Bergerat A, de Massy B, Gadelle D, Varoutas P, Nicolas A, Forterre P: An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 1997, 386(6623):414-417. doi:10.1038/386414a
- [5]Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM: Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 1998, 94(3):387-398. doi:10.1016/S0092-8674(00)81481-6
- [6]McKim KS, Hayashi-Hagihara A: mei-w68 in drosophila melanogaster encodes a spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 1998, 12(18):2932-2942.
- [7]Baudat F, Imai Y, de Massy B: Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 2013, 14:794-806. doi:10.1038/nrg3573
- [8]Neale M, Pan J, Keeney S: Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 2005, 436(7053):1053-1057. doi:10.1038/nature0387
- [9]Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S: A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011, 144(5):719-731. doi:10.1016/j.cell.2011.02.009
- [10]Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD: Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 2000, 97(21):11383-11390. doi:10.1073/pnas.97.21.11383. http://www.pnas.org/content/97/21/11383.full.pdf+html
- [11]Blat Y, Protacio RU, Hunter N, Kleckner N: Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 2002, 111(6):791-802. doi:10.1016/S0092-8674(02)01167-4
- [12]Fan QQ, Petes TD: Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the his4 locus of saccharomyces cerevisiae. Mol Cell Biol 1996, 16(5):2037-43. http://mcb.asm.org/content/16/5/2037.full.pdf+html
- [13]Keeney S, Kleckner N: Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes to Cells 1996, 1(5):475-489. doi:10.1046/j.1365-2443.1996.d01-257.x
- [14]Ohta K, Shibata T, Nicolas A: Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO Journal 1994, 13(23):5754-5763.
- [15]Wu T, Lichten M: Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 1994, 263(5146):515-518. doi:10.1126/science.8.290959. http://www.sciencemag.org/content/263/5146/515.full.pdf
- [16]Borde V, Wu T-C, Lichten M: Use of a recombination reporter insert to define meiotic recombination domains on chromosome iii ofsaccharomyces cerevisiae. Mol Cell Biol 1999, 19(7):4832-4842. http://mcb.asm.org/content/19/7/4832.full.pdf+html
- [17]Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A: Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO Journal 2009, 28(2):99-111. doi:10.1038/emboj.2008.25
- [18]Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C, Nicolas A, Géli V: The compass subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 2013, 339(6116):215-218. doi:10.1126/science.1225739. http://www.sciencemag.org/content/339/6116/215.full.pdf
- [19]Smith AV, Roeder GS: The yeast red1 protein localizes to the cores of meiotic chromosomes. J Cell Biol 1997, 136(5):957-967. doi:10.1083/jcb.136.5.957. http://jcb.rupress.org/content/136/5/957.full.pdf+html
- [20]Klein F, Mahr P, Galova M, Buonomo SBC, Michaelis C, Nairz K, Nasmyth K: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 1999, 98(1):91-103. doi:10.1016/S0092-8674(00)80609-1
- [21]Padmore R, Cao L, Kleckner N: Temporal comparison of recombination and synaptonemal complex formation during meiosis in s. cerevisiae. Cell 1991, 66(6):1239-1256. doi:10.1016/0092-8674(91)90046-2
- [22]Blat Y, Kleckner N: Cohesins bind to preferential sites along yeast chromosome iii, with differential regulation along arms versus the centric region. Cell 1999, 98(2):249-259. doi:10.1016/S0092-8674(00)81019-3
- [23]Zickler D, Kleckner N: Meiotic chromosomes: integrating structure and function. Annu Rev Genet 1999, 33(1):603-754. doi:10.1146/annurev.genet.33.1.603. PMID: 10690419. http://www.annualreviews.org/doi/pdf/10.1146/annurev.genet.33.1.603
- [24]Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F: Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 2011, 146(3):372-383. doi:10.1016/j.cell.2011.07.003
- [25]Glynn EF, Megee PC, Yu H-G, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL: Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004, 2(9):259. doi:10.1371/journal.pbio.0020259
- [26]Sharp PM, Lloyd AT: Regional base composition variation along yeast chromosome iii: evolution of chromosome primary structure. Nucleic Acids Res 1993, 21(2):179-183.
- [27]Lichten M, Goldman AS: Meiotic recombination hotspots. Annu Rev Genet 1995, 29:423-44.
- [28]Baudat F, Nicolas A: Clustering of meiotic double-strand breaks on yeast chromosome iii. Proc Natl Acad Sci USA 1997, 94:5213-5218.
- [29]Petes TD, Merker JD: Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 2002, 162(4):2049-2052.
- [30]Chen W, Feng PM, Lin H, Chou K: irspot-psednc: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 2013, 41(6):68. doi:10.1093/nar/gks1450
- [31]Liu G, Liu J, Cui X, Cai L: Sequence-dependent prediction of recombination hotspots in saccharomyces cerevisiae. J Theor Biol 2012, 293:49-54. doi:10.1016/j.jtbi.2011.10.004
- [32]Jiang P, Wu H, Wei J, Sang F, Sun X, Lu Z: Rf-dymhc: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features. Nucleic Acids Res 2007, 35(Web Server issue):47-51. doi:10.1093/nar/gkm217
- [33]Tkačik G, Bialek W: Diffusion, dimensionality, and noise in transcriptional regulation. Phys Rev E 2009, 79:051901.
- [34]Pérez-Ortín JE, Alepuz PM, Moreno J: Genomics and gene transcription kinetics in yeast. Trends Genet 2007, 23(5):250-257.
- [35]Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA: Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005, 122(4):517-527. doi:10.1016/j.cell.2005.06.026
- [36]Chang DT-H, Huang C-Y, Wu C-Y, Wu W-S: YPA: an integrated repository of promoter features in saccharomyces cerevisiae. Nucleic Acids Res 2011, 39(suppl 1):647-652. doi:10.1093/nar/gkq1086
- [37]Hollingsworth NM, Ponte L: Genetic interactions between hop1, red1 and mek1 suggest that mek1 regulates assembly of axial element components during meiosis in the yeast saccharomyces cerevisiae. Genetics 1997, 147(1):33-42. http://www.genetics.org/content/147/1/33.full.pdf+html
- [38]Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, de los Santos T, Hollingsworth NM: Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins red1p and hop1p. Mol Cell Biol 2000, 20(18):6646-6658. doi:10.1128/MCB.20.18.6646-6658.2000. http://mcb.asm.org/content/20/18/6646.full.pdf+html
- [39]de Castro E, Soriano I, Marín L, Serrano R, Quintales L, Antequera F: Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. EMBO J 2012, 31(1):124-137. doi:10.1038/emboj.2011.350
- [40]Fowler KR, Sasaki M, Milman N, Keeney S, Smith GR: Evolutionarily diverse determinants of meiotic dna break and recombination landscapes across the genome. Genome Res2014. doi:10.1101/gr.172122.114. http://genome.cshlp.org/content/early/2014/07/14/gr.172122.114.full.pdf+html.
- [41]Meunier J, Duret L: Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 2004, 21(6):984-990. doi:10.1093/molbev/msh070. http://mbe.oxfordjournals.org/content/21/6/984.full.pdf+html
- [42]Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV: Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 2011, 472(7343):375-378.
- [43]Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192. doi:10.1093/bib/bbs017. http://bib.oxfordjournals.org/content/14/2/178.full.pdf+html
- [44]R Development Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing; 2011. ISBN 3-900051-07-0. http://www.R-project.org/.
- [45]Dujon B: The yeast genome project: what did we learn? Trends Genet 1996, 12(7):263-270. doi:10.1016/0168-9525(96)10027-5
PDF