期刊论文详细信息
BMC Bioinformatics
SPoRE: a mathematical model to predict double strand breaks and axis protein sites in meiosis
Raphaël Champeimont2  Alessandra Carbone1 
[1] Institut Universitaire de France, Paris 75005, France
[2] CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris F-75006, France
关键词: Saccharomyces cerevisiae;    Intergenic region;    Modeling;    Gene;    Genome;    3D chromosomal structure;    Recombination;   
Others  :  1084442
DOI  :  10.1186/s12859-014-0391-1
 received in 2014-08-27, accepted in 2014-11-19,  发布年份 2014
PDF
【 摘 要 】

Background

Meiotic recombination between homologous chromosomes provides natural combinations of genetic variations and is a main driving force of evolution. It is initiated via programmed DNA double-strand breaks (DSB) and involves a specific axial chromosomal structure. So far, recombination regions have been mainly determined by experiments, both expensive and time-consuming.

Results

SPoRE is a mathematical model that describes the non-uniform localisation of DSB and axis proteins sites, and distinguishes high versus low protein density. It is based on a combination of genomic signals, based on what is known from wet-lab experiments, whose contribution is precisely quantified. It models axis proteins accumulation at gene 5’-ends with a discrete approximation of their diffusion and convection along genes. It models DSB accumulation at approximated gene promoter positions with intergenic region length and GC-content. SPoRE can be used for prediction and it is parameterised in an obvious way that makes it easy to understand from a biological viewpoint.

Conclusions

When compared to Saccharomyces cerevisiae experimental data, SPoRE predicts axis protein and DSB positions with high sensitivity and precision, axis protein density with an average local correlation r=0.63 and DSB density with an average local correlation r=0.62. SPoRE outbreaks previous DSB predictors, which are based on nucleotide patterning, and it reaches 85% of success rate in DSB prediction compared to 54% obtained by available tools on a benchmarked dataset.

SPoRE is available at the address http://www.lcqb.upmc.fr/SPoRE/ webcite.

【 授权许可】

   
2014 Champeimont and Carbone; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113161629713.pdf 1198KB PDF download
Figure 5. 41KB Image download
Figure 4. 75KB Image download
Figure 3. 54KB Image download
Figure 2. 76KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Petes T: Meiotic recombination hot spots and cold spots. Nat Rev Genet 2001, 2(5):360-369. doi:10.1038/3507207
  • [2]Kauppi L, Jeffreys A, Keeney S: Where the crossovers are: Recombination distributions in mammals. Nat Rev Genet 2004, 5(6):413-424. doi:10.1038/nrg134
  • [3]Keeney S: Spo11 and the formation of dna double-strand breaks in meiosis. In Recombination and Meiosis. Genome Dynamics and Stability. Edited by Egel R, Lankenau D-H. Berlin, Heidelberg: Springer-Verlag, GmbH & Co; 2008:81–123.
  • [4]Bergerat A, de Massy B, Gadelle D, Varoutas P, Nicolas A, Forterre P: An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 1997, 386(6623):414-417. doi:10.1038/386414a
  • [5]Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM: Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 1998, 94(3):387-398. doi:10.1016/S0092-8674(00)81481-6
  • [6]McKim KS, Hayashi-Hagihara A: mei-w68 in drosophila melanogaster encodes a spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved. Genes Dev 1998, 12(18):2932-2942.
  • [7]Baudat F, Imai Y, de Massy B: Meiotic recombination in mammals: localization and regulation. Nat Rev Genet 2013, 14:794-806. doi:10.1038/nrg3573
  • [8]Neale M, Pan J, Keeney S: Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 2005, 436(7053):1053-1057. doi:10.1038/nature0387
  • [9]Pan J, Sasaki M, Kniewel R, Murakami H, Blitzblau HG, Tischfield SE, Zhu X, Neale MJ, Jasin M, Socci ND, Hochwagen A, Keeney S: A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 2011, 144(5):719-731. doi:10.1016/j.cell.2011.02.009
  • [10]Gerton JL, DeRisi J, Shroff R, Lichten M, Brown PO, Petes TD: Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci 2000, 97(21):11383-11390. doi:10.1073/pnas.97.21.11383. http://www.pnas.org/content/97/21/11383.full.pdf+html
  • [11]Blat Y, Protacio RU, Hunter N, Kleckner N: Physical and functional interactions among basic chromosome organizational features govern early steps of meiotic chiasma formation. Cell 2002, 111(6):791-802. doi:10.1016/S0092-8674(02)01167-4
  • [12]Fan QQ, Petes TD: Relationship between nuclease-hypersensitive sites and meiotic recombination hot spot activity at the his4 locus of saccharomyces cerevisiae. Mol Cell Biol 1996, 16(5):2037-43. http://mcb.asm.org/content/16/5/2037.full.pdf+html
  • [13]Keeney S, Kleckner N: Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes to Cells 1996, 1(5):475-489. doi:10.1046/j.1365-2443.1996.d01-257.x
  • [14]Ohta K, Shibata T, Nicolas A: Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO Journal 1994, 13(23):5754-5763.
  • [15]Wu T, Lichten M: Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 1994, 263(5146):515-518. doi:10.1126/science.8.290959. http://www.sciencemag.org/content/263/5146/515.full.pdf
  • [16]Borde V, Wu T-C, Lichten M: Use of a recombination reporter insert to define meiotic recombination domains on chromosome iii ofsaccharomyces cerevisiae. Mol Cell Biol 1999, 19(7):4832-4842. http://mcb.asm.org/content/19/7/4832.full.pdf+html
  • [17]Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A: Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO Journal 2009, 28(2):99-111. doi:10.1038/emboj.2008.25
  • [18]Acquaviva L, Székvölgyi L, Dichtl B, Dichtl BS, de La Roche Saint André C, Nicolas A, Géli V: The compass subunit Spp1 links histone methylation to initiation of meiotic recombination. Science 2013, 339(6116):215-218. doi:10.1126/science.1225739. http://www.sciencemag.org/content/339/6116/215.full.pdf
  • [19]Smith AV, Roeder GS: The yeast red1 protein localizes to the cores of meiotic chromosomes. J Cell Biol 1997, 136(5):957-967. doi:10.1083/jcb.136.5.957. http://jcb.rupress.org/content/136/5/957.full.pdf+html
  • [20]Klein F, Mahr P, Galova M, Buonomo SBC, Michaelis C, Nairz K, Nasmyth K: A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell 1999, 98(1):91-103. doi:10.1016/S0092-8674(00)80609-1
  • [21]Padmore R, Cao L, Kleckner N: Temporal comparison of recombination and synaptonemal complex formation during meiosis in s. cerevisiae. Cell 1991, 66(6):1239-1256. doi:10.1016/0092-8674(91)90046-2
  • [22]Blat Y, Kleckner N: Cohesins bind to preferential sites along yeast chromosome iii, with differential regulation along arms versus the centric region. Cell 1999, 98(2):249-259. doi:10.1016/S0092-8674(00)81019-3
  • [23]Zickler D, Kleckner N: Meiotic chromosomes: integrating structure and function. Annu Rev Genet 1999, 33(1):603-754. doi:10.1146/annurev.genet.33.1.603. PMID: 10690419. http://www.annualreviews.org/doi/pdf/10.1146/annurev.genet.33.1.603
  • [24]Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F: Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 2011, 146(3):372-383. doi:10.1016/j.cell.2011.07.003
  • [25]Glynn EF, Megee PC, Yu H-G, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL: Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2004, 2(9):259. doi:10.1371/journal.pbio.0020259
  • [26]Sharp PM, Lloyd AT: Regional base composition variation along yeast chromosome iii: evolution of chromosome primary structure. Nucleic Acids Res 1993, 21(2):179-183.
  • [27]Lichten M, Goldman AS: Meiotic recombination hotspots. Annu Rev Genet 1995, 29:423-44.
  • [28]Baudat F, Nicolas A: Clustering of meiotic double-strand breaks on yeast chromosome iii. Proc Natl Acad Sci USA 1997, 94:5213-5218.
  • [29]Petes TD, Merker JD: Context dependence of meiotic recombination hotspots in yeast: the relationship between recombination activity of a reporter construct and base composition. Genetics 2002, 162(4):2049-2052.
  • [30]Chen W, Feng PM, Lin H, Chou K: irspot-psednc: identify recombination spots with pseudo dinucleotide composition. Nucleic Acids Res 2013, 41(6):68. doi:10.1093/nar/gks1450
  • [31]Liu G, Liu J, Cui X, Cai L: Sequence-dependent prediction of recombination hotspots in saccharomyces cerevisiae. J Theor Biol 2012, 293:49-54. doi:10.1016/j.jtbi.2011.10.004
  • [32]Jiang P, Wu H, Wei J, Sang F, Sun X, Lu Z: Rf-dymhc: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features. Nucleic Acids Res 2007, 35(Web Server issue):47-51. doi:10.1093/nar/gkm217
  • [33]Tkačik G, Bialek W: Diffusion, dimensionality, and noise in transcriptional regulation. Phys Rev E 2009, 79:051901.
  • [34]Pérez-Ortín JE, Alepuz PM, Moreno J: Genomics and gene transcription kinetics in yeast. Trends Genet 2007, 23(5):250-257.
  • [35]Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA: Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005, 122(4):517-527. doi:10.1016/j.cell.2005.06.026
  • [36]Chang DT-H, Huang C-Y, Wu C-Y, Wu W-S: YPA: an integrated repository of promoter features in saccharomyces cerevisiae. Nucleic Acids Res 2011, 39(suppl 1):647-652. doi:10.1093/nar/gkq1086
  • [37]Hollingsworth NM, Ponte L: Genetic interactions between hop1, red1 and mek1 suggest that mek1 regulates assembly of axial element components during meiosis in the yeast saccharomyces cerevisiae. Genetics 1997, 147(1):33-42. http://www.genetics.org/content/147/1/33.full.pdf+html
  • [38]Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, de los Santos T, Hollingsworth NM: Meiotic segregation, synapsis, and recombination checkpoint functions require physical interaction between the chromosomal proteins red1p and hop1p. Mol Cell Biol 2000, 20(18):6646-6658. doi:10.1128/MCB.20.18.6646-6658.2000. http://mcb.asm.org/content/20/18/6646.full.pdf+html
  • [39]de Castro E, Soriano I, Marín L, Serrano R, Quintales L, Antequera F: Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. EMBO J 2012, 31(1):124-137. doi:10.1038/emboj.2011.350
  • [40]Fowler KR, Sasaki M, Milman N, Keeney S, Smith GR: Evolutionarily diverse determinants of meiotic dna break and recombination landscapes across the genome. Genome Res2014. doi:10.1101/gr.172122.114. http://genome.cshlp.org/content/early/2014/07/14/gr.172122.114.full.pdf+html.
  • [41]Meunier J, Duret L: Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 2004, 21(6):984-990. doi:10.1093/molbev/msh070. http://mbe.oxfordjournals.org/content/21/6/984.full.pdf+html
  • [42]Smagulova F, Gregoretti IV, Brick K, Khil P, Camerini-Otero RD, Petukhova GV: Genome-wide analysis reveals novel molecular features of mouse recombination hotspots. Nature 2011, 472(7343):375-378.
  • [43]Thorvaldsdóttir H, Robinson JT, Mesirov JP: Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14(2):178-192. doi:10.1093/bib/bbs017. http://bib.oxfordjournals.org/content/14/2/178.full.pdf+html
  • [44]R Development Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing; 2011. ISBN 3-900051-07-0. http://www.R-project.org/.
  • [45]Dujon B: The yeast genome project: what did we learn? Trends Genet 1996, 12(7):263-270. doi:10.1016/0168-9525(96)10027-5
  文献评价指标  
  下载次数:148次 浏览次数:34次