BMC Cancer | |
Concurrent epigenetic silencing of wnt/β-catenin pathway inhibitor genes in B cell chronic lymphocytic leukaemia | |
Evgeny A Moskalev6  Katrin Luckert4  Ivan A Vorobjev7  Sergey E Mastitsky3  Aleena A Gladkikh1  Achim Stephan2  Marita Schrenk2  Kamil D Kaplanov5  Olga B Kalashnikova5  Oliver Pötz4  Thomas O Joos4  Jörg D Hoheisel2  | |
[1] Functional Morphology of Hemablastoses, National Hematology Research Centre of Russian Academy of Medical Sciences, Novy Zykovsky passage 4a, 125167, Moscow, Russia | |
[2] Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany | |
[3] Theoretical Bioinformatics, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany | |
[4] Biochemistry Department, NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstr. 55, 72770, Reutlingen, Germany | |
[5] Department of Haematology, Volgograd Regional Clinical Oncological Dispensary No.1, Zemlyachki str. 78, 400138, Volgograd, Russia | |
[6] Diagnostic Molecular Pathology, Institute of Pathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, 91054, Erlangen, Germany | |
[7] A.N. Belozersky Institute and Biological Faculty, Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia | |
关键词: β-catenin; Epigenetic silencing; DNA hypermethylation; Inhibitor genes; Wnt/β-catenin pathway; B cell chronic lymphocytic leukaemia; | |
Others : 1080394 DOI : 10.1186/1471-2407-12-213 |
|
received in 2012-02-14, accepted in 2012-06-06, 发布年份 2012 | |
【 摘 要 】
Background
The Wnt/β-catenin signalling is aberrantly activated in primary B cell chronic lymphocytic leukaemia (CLL). Epigenetic silencing of pathway inhibitor genes may be a mechanism for its activation. In this study, we investigated systematically and quantitatively the methylation status of 12 Wnt/β-catenin pathway inhibitor genes – CDH1, DACT1, DKK1, DKK2, DKK3, DKK4, SFRP1, SFRP2, SFRP3, SFRP4, SFRP5 and WIF1 – in the cell lines EHEB and MEC-1 as well as patient samples.
Methods
Quantification of DNA methylation was performed by means of bisulphite pyrosequencing and confirmed by bisulphite Sanger sequencing. Gene expression was analysed by qPCR using GAPDH as internal control. E-cadherin and β-catenin protein quantification was carried out by microsphere-based immunoassays. Methylation differences observed between the patient and control groups were tested using generalised least squares models.
Results
For 10 genes, a higher methylation level was observed in tumour material. Only DKK4 exhibited similarly high methylation levels in both tumour and normal specimens, while DACT1 was always essentially unmethylated. However, also for these inhibitors, treatment of cells with the demethylating agent 5-aza-2´-deoxycytidine resulted in an induction of their expression, as shown by quantitative PCR, suggesting an indirect epigenetic control of activity. While the degree of demethylation and its transcriptional consequences differed between the genes, there was an overall high correlation of demethylation and increased activity. Protein expression studies revealed that no constitutive Wnt/β-catenin signalling occurred in the cell lines, which is in discrepancy with results from primary CLL. However, treatment with 5-aza-2´-deoxycytidine caused accumulation of β-catenin. Simultaneously, E-cadherin expression was strongly induced, leading to the formation of a complex with β-catenin and thus demonstrating its epigenetically regulated inhibition effect.
Conclusions
The results suggest an epigenetic silencing mechanism of the Wnt/β-catenin pathway inhibitor genes in CLL. Hypermethylation and silencing of functionally related genes may not be completely stochastic but result from the tumour epigenome reprogramming orchestrated by Polycomb-group repressive complexes. The data are of interest in the context of epigenetic-based therapy.
【 授权许可】
2012 Moskalev et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20141203003617451.pdf | 2327KB | download | |
Figure 5. | 71KB | Image | download |
Figure 4. | 54KB | Image | download |
Figure 3. | 153KB | Image | download |
Figure 2. | 40KB | Image | download |
Figure 1. | 87KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Lu D, Zhao Y, Tawatao R, Cottam HB, Sen M, Leoni LM, Kipps TJ, Corr M, Carson DA: Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2004, 101:3118-3123.
- [2]Klaus A, Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer 2008, 8:387-398.
- [3]Gutierrez A, Tschumper RC, Wu X, Shanafelt TD, Eckel-Passow J, Huddleston PM, Slager SL, Kay NE, Jelinek DF: LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B cell lymphocytosis. Blood 2010, 116:2975-2983.
- [4]Zenz T, Mertens D, Küppers R, Döhner H, Stilgenbauer S: From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer 2010, 10:37-50.
- [5]Staal FJ, Clevers HC: WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 2005, 5:21-30.
- [6]Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA: Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia 2010, 12:326-335.
- [7]Lu D, Liu JX, Endo T, Zhou H, Yao S, Willert K, Schmidt-Wolf IG, Kipps TJ, Carson DA: Ethacrynic acid exhibits selective toxicity to chronic lymphocytic leukemia cells by inhibition of the Wnt/beta-catenin pathway. PLoS One 2009, 4:e8294.
- [8]MacDonald BT, Tamai K, He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17:9-26.
- [9]Zhang L, Gao X, Wen J, Ning Y, Chen YG: Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 2006, 281:8607-8612.
- [10]Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 2004, 303:1483-1487.
- [11]Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M, Toyota M, Tokino T, Hinoda Y, Imai K, Herman JG, Baylin SB: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004, 36:417-422.
- [12]Taniguchi H, Yamamoto H, Hirata T, Miyamoto N, Oki M, Nosho K, Adachi Y, Endo T, Imai K, Shinomura Y: Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers. Oncogene 2005, 24:7946-7952.
- [13]Nojima M, Suzuki H, Toyota M, Watanabe Y, Maruyama R, Sasaki S, Sasaki Y, Mita H, Nishikawa N, Yamaguchi K, Hirata K, Itoh F, Tokino T, Mori M, Imai K, Shinomura Y: Frequent epigenetic inactivation of SFRP genes and constitutive activation of Wnt signaling in gastric cancer. Oncogene 2007, 26:4699-4713.
- [14]Ying Y, Tao Q: Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics 2009, 4:307-312.
- [15]Chim CS, Fung TK, Wong KF, Lau JS, Liang R: Infrequent Wnt inhibitory factor-1 (Wif-1) methylation in chronic lymphocytic leukemia. Leuk Res 2006, 30:1135-1139.
- [16]Liu T, Raval A, Chen SS, Matkovic JJ, Byrd JC, Plass C: CpG island methylation and expression of the secreted frizzled-related protein gene family in chronic lymphocytic leukemia. Cancer Res 2006, 66:653-658.
- [17]Chim CS, Pang R, Liang R: Epigenetic dysregulation of the Wnt signalling pathway in chronic lymphocytic leukaemia. J Clin Pathol 2008, 61:1214-1219.
- [18]Seeliger B, Wilop S, Osieka R, Galm O, Jost E: CpG island methylation patterns in chronic lymphocytic leukemia. Leuk Lymphoma 2009, 50:419-426.
- [19]Melki JR, Vincent PC, Brown RD, Clark SJ: Hypermethylation of E-cadherin in leukemia. Blood 2000, 95:3208-3213.
- [20]Stacchini A, Aragno M, Vallario A, Alfarano A, Circosta P, Gottardi D, Faldella A, Rege-Cambrin G, Thunberg U, Nilsson K, Caligaris-Cappio F: MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res 1999, 23:127-136.
- [21]Saltman D, Bansal NS, Ross FM, Ross JA, Turner G, Guy K: Establishment of a karyotypically normal B-chronic lymphocytic leukemia cell line; evidence of leukemic origin by immunoglobulin gene rearrangement. Leuk Res 1990, 14:381-387.
- [22]Rush LJ, Raval A, Funchain P, Johnson AJ, Smith L, Lucas DM, Bembea M, Liu TH, Heerema NA, Rassenti L, Liyanarachchi S, Davuluri R, Byrd JC, Plass C: Epigenetic profiling in chronic lymphocytic leukemia reveals novel methylation targets. Cancer Res 2004, 64:2424-2433.
- [23]Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S, Young DC, Rassenti L, Kipps TJ, Grever MR, Byrd JC, Plass C: TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 2005, 23:3877-3885.
- [24]Bennett LB, Schnabel JL, Kelchen JM, Taylor KH, Guo J, Arthur GL, Papageorgio CN, Shi H, Caldwell CW: DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes Chromosomes Cancer 2009, 48:828-841.
- [25]Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O’Brien S, Rai KR: National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996, 87:4990-4997.
- [26]Nikitin EA, Malakho SG, Biderman BV, Baranova AV, Lorie YY, Shevelev AY, Peklo MM, Vlasik TN, Moskalev EA, Zingerman BV, Vorob'ev IA, Poltaraus AB, Sudarikov AB, Vorobjev AI: Expression level of lipoprotein lipase and dystrophin genes predict survival in B cell chronic lymphocytic leukemia. Leuk Lymphoma 2007, 48:912-922.
- [27]Rohde C, Zhang Y, Reinhardt R, Jeltsch A: BISMA – fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 2010, 11:230. BioMed Central Full Text
- [28]Moskalev EA, Zavgorodnij MG, Majorova SP, Vorobjev IA, Jandaghi P, Bure IV, Hoheisel JD: Correction of PCR-bias in quantitative DNA methylation studies by means of cubic polynomial regression. Nucleic Acids Res 2011, 39:e77.
- [29]Yamada H, Shinmura K, Goto M, Iwaizumi M, Konno H, Kataoka H, Yamada M, Ozawa T, Tsuneyoshi T, Tanioka F, Sugimura H: Absence of germline mono-allelic promoter hypermethylation of the CDH1 gene in gastric cancer patients. Molecular Cancer 2009, 8:63. BioMed Central Full Text
- [30]Yau TO, Chan CY, Chan KL, Lee MF, Wong CM, Fan ST, Ng IO: HDPR1, a novel inhibitor of the WNT/beta-catenin signaling, is frequently downregulated in hepatocellular carcinoma: involvement of methylation-mediated gene silencing. Oncogene 2005, 24:1607-1614.
- [31]Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, García JM, Muñoz A, Esteller M, González-Sancho JM: Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 2006, 25:4116-4121.
- [32]Fujikane T, Nishikawa N, Toyota M, Suzuki H, Nojima M, Maruyama R, Ashida M, Ohe-Toyota M, Kai M, Nishidate T, Sasaki Y, Ohmura T, Hirata K, Tokino T: Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Res Treat 2009, 122:699-710.
- [33]Sato H, Suzuki H, Toyota M, Nojima M, Maruyama R, Sasaki S, Takagi H, Sogabe Y, Sasaki Y, Idogawa M, Sonoda T, Mori M, Imai K, Tokino T, Shinomura Y: Frequent epigenetic inactivation of DICKKOPF family genes in human gastrointestinal tumors. Carcinogenesis 2007, 28:2459-2466.
- [34]Mazieres J, He B, You L, Xu Z, Lee AY, Mikami I, Reguart N, Rosell R, McCormick F, Jablons DM: Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Res 2004, 64:4717-4720.
- [35]Carr IM, Valleley EM, Cordery SF, Markham AF, Bonthron DT: Sequence analysis and editing for bisulphite genomic sequencing projects. Nucleic Acids Res 2007, 35:e79.
- [36]Pinheiro JC, Bates DM: Mixed-Effects Models in S and S-PLUS. Springer, New York; 2000.
- [37]Pinheiro J, Bates D, DebRoy S, Sarkar D, the R Development Core Team: nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-104. [ http://cran.r-project.org/web/packages/nlme webcite]
- [38]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2011.
- [39]Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M, Lightfoot S, Menzel W, Granzow M, Ragg T: The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006, 7:89.
- [40]Pscherer A, Schliwka J, Wildenberger K, Mincheva A, Schwaenen C, Döhner H, Stilgenbauer S, Lichter P: Antagonizing inactivated tumor suppressor genes and activated oncogenes by a versatile transgenesis system: application in mantle cell lymphoma. FASEB J 2006, 20:1188-1190.
- [41]Luckert K, Goetschel F, Sorger PK, Hecht A, Joos TO, Poetz O: Snapshots of protein dynamics and posttranslational modifications in one experiment - β-catenin and its functions. Mol Cell Prot 2011, 10:M110.007377.
- [42]Poetz O, Luckert K, Herget T, Joos TO: Microsphere-based co-immunoprecipitation in multiplex. Anal Biochem 2009, 395:244-248.
- [43]Muggerud AA, Rønneberg JA, Wärnberg F, Botling J, Busato F, Jovanovic J, Solvang H, Bukholm I, Børresen-Dale A, Kristensen VN, Sørlie T, Tost J: Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Research 2010, 12:R3. BioMed Central Full Text
- [44]Yoo CB, Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 2006, 5:37-50.
- [45]Sharma S, Lichtenstein A: Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood 2009, 114:4179-4185.
- [46]Rich A, Nordheim A, Wang AH: The chemistry and biology of left-handed Z-DNA. Annu Rev Biochem 1984, 53:791-846.
- [47]Filali M, Cheng N, Abbott D, Leontiev V, Engelhardt JF: Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter. J Biol Chem 2002, 277:33398-33410.
- [48]Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L, Mohammad HP, Chen W, Daniel VC, Yu W, Berman DM, Jenuwein T, Pruitt K, Sharkis SJ, Watkins DN, Herman JG, Baylin SB: A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007, 39:237-242.
- [49]Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C, Weisenberger DJ, Campan M, Young J, Jacobs I, Laird PW: Epigenetic stem cell signature in cancer. Nat Genet 2007, 39:157-158.
- [50]Margueron R, Reinberg D: The Polycomb complex PRC2 and its mark in life. Nature 2011, 469:343-349.
- [51]Velichutina I, Shaknovich R, Geng H, Johnson NA, Gascoyne RD, Melnick AM, Elemento O: EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010, 116:5247-5255.
- [52]Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K, Koseki H, Fuchikami T, Abe K, Murray HL, Zucker JP, Yuan B, Bell GW, Herbolsheimer E, Hannett NM, Sun K, Odom DT, Otte AP, Volkert TL, Bartel DP, Melton DA, Gifford DK, Jaenisch R, Young RA: Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006, 125:301-313.
- [53]Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F: The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006, 439:871-874.
- [54]Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010, 20:440-446.
- [55]Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, Kawashima K, Laird PW, Jones PA, Liang G: Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res 2010, 70:8169-8178.
- [56]Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC: Monoclonal B cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia 2010, 24:512-520.