期刊论文详细信息
BioMedical Engineering OnLine
Automatic method of analysis and measurement of additional parameters of corneal deformation in the Corvis tonometer
Robert Koprowski1 
[1] Department of Biomedical Computer Systems, University of Silesia, Faculty of Computer Science and Materials Science, Institute of Computer Science, ul. Będzińska 39, Sosnowiec 41-200, Poland
关键词: Corneal deformation;    Scheimpflug camera;    Image processing;    Corvis ST;    Biomechanics;    Eye;    Cornea;    Tonometer;   
Others  :  1097933
DOI  :  10.1186/1475-925X-13-150
 received in 2014-10-09, accepted in 2014-11-03,  发布年份 2014
PDF
【 摘 要 】

Introduction

The method for measuring intraocular pressure using the Corvis tonometer provides a sequence of images of corneal deformation. Deformations of the cornea are recorded using the ultra-high-speed Scheimpflug camera. This paper presents a new and reproducible method of analysis of corneal deformation images that allows for automatic measurements of new features, namely new three parameters unavailable in the original software.

Material and method

The images subjected to processing had a resolution of 200 × 576 × 140 pixels. They were acquired from the Corvis tonometer and simulation. In total 14000 2D images were analysed. The image analysis method proposed by the author automatically detects the edge of the cornea and sclera fragments. For this purpose, new methods of image analysis and processing proposed by the author as well as those well-known, such as Canny filter, binarization, median filtering etc., have been used. The presented algorithms were implemented in Matlab (version 7.11.0.584 - R2010b) with Image Processing toolbox (version 7.1 -R2010b) using both known algorithms for image analysis and processing and those proposed by the author.

Results

Owing to the proposed algorithm it is possible to determine three parameters: (1) the degree of the corneal reaction relative to the static position; (2) the corneal length changes; (3) the ratio of amplitude changes to the corneal deformation length. The corneal reaction is smaller by about 30.40% compared to its static position. The change in the corneal length during deformation is very small, approximately 1% of its original length. Parameter (3) enables to determine the applanation points with a correlation of 92% compared to the conventional method for calculating corneal flattening areas. The proposed algorithm provides reproducible results fully automatically within a few seconds/per patient using Core i7 processor.

Conclusions

Using the proposed algorithm, it is possible to measure new, additional parameters of corneal deformation, which are not available in the original software. The presented analysis method provides three new parameters of the corneal reaction. Detailed clinical studies based on this method will be presented in subsequent papers.

【 授权许可】

   
2014 Koprowski; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150131011107325.pdf 1643KB PDF download
Figure 10. 90KB Image download
Figure 9. 73KB Image download
Figure 8. 73KB Image download
Figure 7. 86KB Image download
Figure 6. 117KB Image download
Figure 5. 75KB Image download
Figure 4. 120KB Image download
Figure 3. 74KB Image download
Figure 2. 78KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Śródka W: Applanation pressure function in Goldmann tonometry and its correction. Acta Bioeng Biomech 2013, 15(3):97-106.
  • [2]Śródka W: Evaluating the material parameters of the human cornea in a numerical model. Acta Bioeng Biomech 2011, 13(3):77-85.
  • [3]Smedowski A, Weglarz B, Tarnawska D, Kaarniranta K, Wylegala E: Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea. Invest Ophthalmol Vis Sci 2014, 55(2):666-673.
  • [4]Shah S, Laiquzzaman M, Mantry S, Cunliffe I: Ocular response analyzer to assess hysteresis and corneal resistance factor in low tension, open angle glaucoma and ocular hypertension. Clin Experiment Ophthalmol 2008, 36:508-513.
  • [5]Hallahan KM, Sinha Roy A, Ambrosio R Jr, Salomao M, Dupps WJ Jr: Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology 2014, 121(2):459-468.
  • [6]Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N: Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 2008, 49:3262-3268.
  • [7]Luce DA: Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005, 31(1):156-162.
  • [8]Malik NS, Moss SJ, Ahmed N, Furth AJ, Wall RS, Meek KM: Ageing of the human corneal stroma: structural and biochemical changes. Biochim Biophys Acta 1992, 1138(3):222-228.
  • [9]Sherrard ES, Novakovic P, Speedwell L: Age-related changes of the corneal endothelium and stroma as seen in vivo by specular microscopy. Eye (Lond) 1987, 1(Pt2):197-203.
  • [10]Kotecha A, Elsheikh A, Roberts CR, Zhu HG, Garway-Heath DF: Corneal thicknessand age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci 2006, 47(12):5337-5347.
  • [11]Lopes B, Ramos I, Ambrósio R Jr: Corneal densitometry in Keratoconus. Cornea 2014, 33(12):1282-1286.
  • [12]Valbon BF, Ambrósio-Jr R, Fontes BM, Alves MR: Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol 2013, 76(4):229-232.
  • [13]Brown KE, Congdon NG: Corneal structure and biomechanics: impact on the diagnosis and management of glaucoma. Curr Opin Ophthalmol 2006, 17(4):338-343.
  • [14]Ambrósio R Jr, Valbon BF, Faria-Correia F, Ramos I, Luz A: Scheimpflug imaging for laser refractive surgery. Curr Opin Ophthalmol 2013, 24(4):310-320.
  • [15]Ozer MA, Acar M, Yildirim C: Intraocular pressure-lowering effects of commonly used fixed combination drugs with timolol in the management of primary open angle glaucoma. Int J Ophthalmol 2014, 7(5):832-836.
  • [16]Borrego SL, Morales L, Martínez de-la-Casa JM, Sáenz-Francés F, Fuentes M, Feijóo JG: The Icare-Pro Rebound Tonometer Versus the Hand-held Applanation Tonometer in Congenital Glaucoma. J Glaucoma 2014., 20
  • [17]Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P: Corneal Deformation Parameters Provided by the Corvis-ST Pachy-Tonometer in Healthy Subjects and Glaucoma Patients. J Glaucoma 2014., 14
  • [18]Shin J, Lee JW, Kim EA, Caprioli J: The Effect of Corneal Biomechanical Properties on Rebound Tonometer in Patients with Normal Tension Glaucoma. Am J Ophthalmol 2014, S0002–9394(14):00655-2.
  • [19]Dupps WJ, Wilson SE: Biomechanics and wound healing in the cornea. Exp Eye Res 2006, 83(4):709-720.
  • [20]Elsheikh A, Alhasso D, Rama P: Assessment of the epithelium’s contribution to corneal biomechanics. Exp Eye Res 2008, 86(2):445-451.
  • [21]Kling S, Bekesi N, Dorronsoro C, Pascual D, Marcos S: Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. PLoS ONE 2014, 9(8):e104904.
  • [22]Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA: Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 2006, 141(5):868-875.
  • [23]Touboul D, Roberts C, Kerautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J: Correlation between corneal hysteresis intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg 2008, 34(4):616-622.
  • [24]Huseynova T, Waring GO 4th, Roberts C, Krueger RR, Tomita M: Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol 2014, 157(4):885-893.
  • [25]Gatinel D, Chaabouni S, Adam PA, Munck J, Puech M, Hoang-Xuan T: Corneal hysteresis, resistance factor, topography, and pachymetry fter corneal lamellar flap. J Refract Surg 2007, 23(1):76-84.
  • [26]Kirwan C, O’Keefe M, Lanigan B: Corneal hysteresis and intraocular pressure measurement in children using the Reichert ocular response analyzer. Am J Ophthalmol 2006, 142(6):990-992.
  • [27]Shah S, Laiquzzaman M, Cunliffe I, Mantry S: The use of the Reichert ocular response analyser to establish the relationship between ocular hysteresis, corneal resistance factor and central corneal thickness in normal eyes. Cont Lens Anterior Eye 2006, 29(5):257-262.
  • [28]Tao C, Han Z, Sun Y, Zhou C, Roberts C, Zhou D, Ren Q: Corneal hysteresis with intraocular pressure of a wide range: a test on porcine eyes. J Refract Surg 2013, 29(12):850-854.
  • [29]Anand A, De Moraes CGV, Teng CC, Tello C, Liebmann JM, Ritch R: Lower corneal hysteresis predicts laterality in asymmetric open angle glaucoma. Invest Ophthalmol Vis Sci 2010, 10:5580.
  • [30]Marjanović I, Martinez A, Marjanović M, Milić N, Kontić D, Hentova-Senćanić P, Marković V, Bozić M: Changes in the retrobulbar hemodynamic parameters after decreasing the elevated intraocular pressure in primary open-angle glaucoma patients. Srp Arh Celok Lek 2014, 142(5–6):286-290.
  • [31]Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alió JL: Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg 2007, 33(8):1371-1375.
  • [32]Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I: Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci 2007, 48(7):3026-3031.
  • [33]Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J: Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking. J Refract Surg 2014, 30(6):408-414.
  • [34]Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ: Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. Am J Ophthalmol 2007, 143(1):39-47.
  • [35]Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J: Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol 2014, 252(8):1329-1335.
  • [36]Meek KM, Leonard DW: Ultrastructure of the corneal stroma: a comparative study. Biophys J 1993, 64(1):273-280.
  • [37]Maeda N, Ueki R, Fuchihata M, Fujimoto H, Koh S, Nishida K: Corneal biomechanical properties in 3 corneal transplantation techniques with a dynamic Scheimpflug analyzer. Jpn J Ophthalmol 2014., 5
  • [38]Correia FF, Ramos I, Roberts CJ, Steinmueller A, Krug M, Ambrósio R Jr: Impact of chamber pressure on the deformation response of corneal models measured by dynamic ultra-high-speed Scheimpflug imaging. Arq Bras Oftalmol 2013, 76(5):278-281.
  • [39]Kotecha A: What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol 2007, 52(2):S109-S114.
  • [40]Ambrósio R, Ramos I, Luz A, Faria F, Steinmueller A, Krug M, Belin M, Roberts CJ: Dynamic ultra high speed Scheimpflug imaging for assessing corneal biomechanical properties. Revista Brasileira de Oftalmologia 2013, 72(2):99-102.
  • [41]Elsheikh A, Anderson K: Comparative study of corneal strip extensometry and inflation tests. J R Soc Interface 2005, 2(3):177-185.
  • [42]Papastergiou GI, Kozobolis V, Siganos DS: Effect of recipient corneal pathology on Pascal tonometer and Goldmann tonometer readings in eyes after penetrating keratoplasty. Eur J Ophthalmol 2010, 20(1):29-34.
  • [43]Herdener S, Hafizovic D, Pache M, Lautebach S, Funk J: Is the PASCAL-Tonometer suitable for measuring intraocular pressure in clinical routine? Long- and short-term reproducibility of dynamic contour tonometry. Eur J Ophthalmol 2008, 18(1):39-43.
  • [44]Fontes BM, Ambrosio R Jr, Alonso RS, Jardim D, Velarde GC, Nose W: Corneal biomechanical metrics in eyes with refraction of -19.00 to +9.00 D in healthy brazilian patients. J Refract Surg 2008, 24(9):941-945.
  • [45]Sullivan-Mee M, Billingsley S, Patel AD, Halverson KD, Alldredge BR, Qualls C: Ocular Response Analyzer in subjects with and without Glaucoma. Optom Vis Sci 2008, 85(6):463-470.
  • [46]Pillunat LE, Anderson DR, Knighto N, Joos KM, Feuer WJ: Autoregulation of human optic nerve in response to increased intraocular pressure. Exp Eye Re 1997, 64:737-744.
  • [47]Sawada A, Yamada H, Yamamoto Y, Yamamoto T: Intraocular pressure alterations after visual field testing. Jpn J Ophthalmol 2014, 58(5):429-434.
  • [48]Metzler KM, Mahmoud AM, Liu J, Roberts CJ: Deformation response of paired donor corneas to an air puff: intact whole globe versus mounted corneoscleral rim. J Cataract Refract Surg 2014, 40(6):888-896.
  • [49]Han Z, Tao C, Zhou D, Sun Y, Zhou C, Ren Q, Roberts CJ: Air puff induced corneal vibrations: theoretical simulations and clinical observations. J Refract Surg 2014, 30(3):208-213.
  • [50]Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, Mastropasqua A, Nubile M: Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Vis Sci 2014, 55(4):2526-2533.
  • [51]Tejwani S, Shetty R, Kurien M, Dinakaran S, Ghosh A, Roy AS: Biomechanics of the Cornea Evaluated by Spectral Analysis of Waveforms from Ocular Response Analyzer and Corvis-ST. PLoS ONE 2014, 9(8):e97591.
  • [52]Koprowski R, Lyssek-Boron A, Nowinska A, Wylegala E, Kasprzak H, Wrobel Z: Selected parameters of the corneal deformation in the Corvis tonometer. Biomed Eng Online 2014, 13:55. BioMed Central Full Text
  • [53]Koprowski R, Kasprzak H, Wróbel Z: New automatic method for analysis and correction of image data from the Corvis tonometer. Comput Methods Biomech Biomed Engin 2014, 1-9. http://dx.doi.org/10.1080/21681163.2014.959137 webcite
  • [54]Koprowski R, Wilczyński S, Nowinska A, Lyssek-Boron A, Teper S, Wylegala E, Wróbel Z: Quantitative assessment of responses of the eyeball based on data from the Corvis tonometer. Comput Biol Med 2014. sent to the Editor
  • [55]Otsu N: A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 1979, 9(1):62-66.
  • [56]Koprowski R: Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing. Biomed Eng Online 2014, 13:93. BioMed Central Full Text
  • [57]Koprowski R, Wrobel Z: Identification of layers in a tomographic image of an eye based on the canny edge detection. Inf Technol Biomed Adv Intell Soft Comput 2008, 47:232-239.
  • [58]Koprowski R, Wróbel Z: Layers recognition in tomographic eye image based on random contour analysis. Computer recognition systems 3. Adv Intell Soft Comput 2009, 57:471-478.
  • [59]Jaworek-Korjakowska J, Tadeusiewicz R: Assessment of dots and globules in dermoscopic color images as One of the 7-point check list criteria. The International Conference on Image Processing 2013, 3:1456-1460.
  • [60]Korzynska A, Iwanowski M: Multistage morphological segmentation of bright-field and fluorescent microscopy images. Opt-Electron Rev 2012, 20(2):87-99.
  • [61]Jaworek-Korjakowska J, Tadeusiewicz R: Hair removal from dermoscopic color images. Bio Algorithm Med Syst 2013, 9(2):53-58.
  • [62]Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X: Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg 2014, 30(5):310-318.
  • [63]Ali NQ, Patel DV, McGhee CN: Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 2014, 55(6):3651-3659.
  • [64]Bañeros-Rojas P, de la Casa JM M, Arribas-Pardo P, Berrozpe-Villabona C, Toro-Utrera P, García-Feijoó J: Comparison between Goldmann, Icare Pro and Corvis ST tonometry. Arch Soc Esp Oftalmol 2014, 89(7):260-264.
  • [65]Tian L, Huang YF, Wang LQ, Bai H, Wang Q, Jiang JJ, Wu Y, Gao M: Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol 2014, 2014:147516.
  • [66]Foster KR, Koprowski R, Skufca JD: Machine learning, medical diagnosis, and biomedical engineering research - commentary. Biomed Eng Online 2014, 13:94. BioMed Central Full Text
  • [67]Wang S, Larin KV: Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics. Opt Lett 2014, 39(1):41-44.
  • [68]Tao A, Chen Z, Shao Y, Wang J, Zhao Y, Lu P, Lu F: Phacoemulsification induced transient swelling of corneal Descemet’s Endothelium Complex imaged with ultra-high resolution optical coherence tomography. PLoS ONE 2013, 8(11):e80986.
  文献评价指标  
  下载次数:86次 浏览次数:17次