期刊论文详细信息
Biology Direct
Molecular musings in microbial ecology and evolution
Yan Boucher1  Rebecca J Case1 
[1]Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
关键词: Tree of Life;    ecological microbiology;    evolutionary microbiology;    microbial evolution;    microbial ecology;    diversity, lateral gene transfer;    Ribosomal RNA genes;   
Others  :  797059
DOI  :  10.1186/1745-6150-6-58
 received in 2011-09-06, accepted in 2011-11-10,  发布年份 2011
PDF
【 摘 要 】

A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.

The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?"For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.

The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?"In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).

The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies below the species level.

The answers of the evolutionary microbiologist and microbial ecologist to these three questions illustrate differences in their theoretical frameworks. These differences mean that both fields can react quite distinctly to the same discovery, incorporating it with more or less difficulty in their scientific practice.

Reviewers

This article was reviewed by W. Ford Doolittle, Eugene V. Koonin and Maureen A. O'Malley.

【 授权许可】

   
2011 Case and Boucher; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706031058694.pdf 314KB PDF download
【 参考文献 】
  • [1]Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD: Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 2005, 7(3):419-433.
  • [2]Peterson CN, Day S, Wolfe BE, Ellison AM, Kolter R, Pringle A: A keystone predator controls bacterial diversity in the pitcher-plant (Sarracenia purpurea) microecosystem. Environ Microbiol 2008, 10(9):2257-2266.
  • [3]Keymer JE, Galajda P, Muldoon C, Park S, Austin RH: Bacterial metapopulations in nanofabricated landscapes. Proc Natl Acad Sci USA 2006, 103(46):17290-17295.
  • [4]Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T: Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci USA 2011, 108(34):14288-14293.
  • [5]Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ: Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 2009, 106(21):8605-8610.
  • [6]Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF: Genotypic diversity within a natural coastal bacterioplankton population. Science 2005, 307(5713):1311-1313.
  • [7]Woese CR: The Phylogeny of Prokaryotes. Science 1980, 209:457.
  • [8]Woese CR, Magrum LJ, Fox GE: Archaebacteria. J Mol Evol 1978, 11(3):245-251.
  • [9]Woese CR: Bacterial evolution. Microbiol Rev 1987, 51(2):221-271.
  • [10]Stanier RY, Van Niel CB: The Main Outlines of Bacterial Classification. J Bacteriol 1941, 42(4):437-466.
  • [11]Weisburg WG, Oyaizu Y, Oyaizu H, Woese CR: Natural relationship between bacteroides and flavobacteria. J Bacteriol 1985, 164(1):230-236.
  • [12]Weisburg WG, Giovannoni SJ, Woese CR: The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 1989, 11:128-134.
  • [13]Bonen L, Doolittle WF: On the prokaryotic nature of red algal chloroplasts. Proc Natl Acad Sci USA 1975, 72(6):2310-2314.
  • [14]Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR: Mitochondrial origins. Proc Natl Acad Sci USA 1985, 82(13):4443-4447.
  • [15]Achenbach-Richter L, Gupta R, Stetter KO, Woese CR: Were the original eubacteria thermophiles? Syst Appl Microbiol 1987, 9:34-39.
  • [16]Dagan T, Martin W: The tree of one percent. Genome Biol 2006, 7(10):118. BioMed Central Full Text
  • [17]Giovannoni SJ, Britschgi TB, Moyer CL, Field KG: Genetic diversity in Sargasso Sea bacterioplankton. Nature 1990, 345(6270):60-63.
  • [18]Ward DM, Weller R, Bateson MM: 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 1990, 345(6270):63-65.
  • [19]Hugenholtz P, Goebel BM, Pace NR: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998, 180(18):4765-4774.
  • [20]Hugenholtz P, Pitulle C, Hershberger KL, Pace NR: Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 1998, 180(2):366-376.
  • [21]Rappe MS, Connon SA, Vergin KL, Giovannoni SJ: Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002, 418(6898):630-633.
  • [22]Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH: ARB: a software environment for sequence data. Nucleic Acids Res 2004, 32(4):1363-1371.
  • [23]Schmidt TM, DeLong EF, Pace NR: Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 1991, 173(14):4371-4378.
  • [24]Rolleke S, Muyzer G, Wawer C, Wanner G, Lubitz W: Identification of bacteria in a biodegraded wall painting by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 1996, 62(6):2059-2065.
  • [25]Whitman WB, Coleman DC, Wiebe WJ: Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 1998, 95(12):6578-6583.
  • [26]Watanabe T: Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev 1963, 27:87-115.
  • [27]Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C, Bruggemann H, Lienard T, Christmann A, Bomeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk HP, Gunsalus RP, Fritz HJ, Gottschalk G: The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 2002, 4(4):453-461.
  • [28]Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM: Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 1999, 399(6734):323-329.
  • [29]Bapteste E, Boucher Y: Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 2008, 16(5):200-207.
  • [30]Beauregard-Racine J, Bicep C, Schliep K, Lopez P, Lapointe FJ, Bapteste E: Of woods and webs: possible alternatives to the tree of life for studying genomic fluidity in E. coli. Biol Direct 2011, 6(1):39. BioMed Central Full Text
  • [31]Konstantinidis KT, Tiedje JM: Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005, 102(7):2567-2572.
  • [32]Konstantinidis KT, Tiedje JM: Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005, 187(18):6258-6264.
  • [33]Bapteste E, Boucher Y: Lateral gene transfer challenges principles of microbial systematics. Trends Microbiol 2008, 16(5):200-207.
  • [34]Feil EJ: Small change: keeping pace with microevolution. Nat Rev Microbiol 2004, 2(6):483-495.
  • [35]Fox GE, Wisotzkey JD, Jurtshuk P: How close is close - 16S ribosomal-RNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bact 1992, 42(1):166-170.
  • [36]Kurland CG: What tangled web: barriers to rampant horizontal gene transfer. Bioessays 2005, 27(7):741-747.
  • [37]Rossello-Mora R, Amann R: The species concept for prokaryotes. FEMS Microbiol Rev 2001, 25(1):39-67.
  • [38]Allgaier M, Uphoff H, Felske A, Wagner-Dobler I: Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 2003, 69(9):5051-5059.
  • [39]Amann RI, Ludwig W, Schleifer KH: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995, 59(1):143-169.
  • [40]Balskus EP, Case RJ, Walsh CT: The biosynthesis of cyanobacterial sunscreen scytonemin in intertidal microbial mat communities. FEMS Microbiol Ecol 2011, 77(2):322-332.
  • [41]Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W, Top EM, Springael D: PCR-DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol 2006, 55(2):262-273.
  • [42]Jabado OJ, Palacios G, Kapoor V, Hui J, Renwick N, Zhai J, Briese T, Lipkin WI: Greene SCPrimer: a rapid comprehensive tool for designing degenerate primers from multiple sequence alignments. Nucleic Acids Res 2006, 34(22):6605-6611.
  • [43]Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428(6978):37-43.
  • [44]Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF: Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 2000, 289(5486):1902-1906.
  • [45]Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF: Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 2008, 105(10):3805-3810.
  • [46]VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF: Systems biology: Functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 2009, 7(3):196-205.
  • [47]Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP: The bacterial species challenge: making sense of genetic and ecological diversity. Science 2009, 323(5915):741-746.
  • [48]Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4(11):e1000255.
  • [49]Konstantinidis KT, Ramette A, Tiedje JM: The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006, 361(1475):1929-1940.
  • [50]Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 2002, 99(26):17020-17024.
  • [51]Thompson JR, Pacocha S, Pharino C, Klepac-Ceraj V, Hunt DE, Benoit J, Sarma-Rupavtarm R, Distel DL, Polz MF: Genotypic diversity within a natural coastal bacterioplankton population. Science 2005, 307(5713):1311-1313.
  • [52]Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J: Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005, 3(9):733-739.
  • [53]Spratt BG, Hanage WP, Feil EJ: The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr Opin Microbiol 2001, 4(5):602-606.
  • [54]Nakayama K, Yamashita A, Kurokawa K, Morimoto T, Ogawa M, Fukuhara M, Urakami H, Ohnishi M, Uchiyama I, Ogura Y, Ooka T, Oshima K, Tamura A, Hattori M, Hayashi T: The Whole-genome sequencing of the obligate intracellular bacterium Orientia tsutsugamushi revealed massive gene amplification during reductive genome evolution. DNA Res 2008, 15(4):185-199.
  • [55]Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RR: Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 2009, 106(36):15442-15447.
  • [56]Moran NA, McLaughlin HJ, Sorek R: The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 2009, 323(5912):379-382.
  • [57]Torsvik V, Goksoyr J, Daae FL: High diversity in DNA of soil bacteria. Appl Environ Microbiol 1990, 56(3):782-787.
  • [58]Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J: Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005, 3(9):733-739.
  • [59]Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, Polz MF: Fine-scale phylogenetic architecture of a complex bacterial community. Nature 2004, 430(6999):551-554.
  • [60]Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009, 75(23):7537-7541.
  • [61]Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4(11):e1000255.
  • [62]Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E: Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009, 5(1):e1000344.
  • [63]Pupo GM, Lan R, Reeves PR: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci USA 2000, 97(19):10567-10572.
  • [64]Kettler GC, Martiny AC, Huang K, Zucker J, Coleman ML, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, Steglich C, Church GM, Richardson P, Chisholm SW: Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genet 2007, 3(12):e231.
  • [65]O'Malley MA, Boucher Y: Paradigm change in evolutionary microbiology. Stud Hist Philos Biol Biomed Sci 2005, 36(1):183-208.
  • [66]Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8(7):R143. BioMed Central Full Text
  文献评价指标  
  下载次数:8次 浏览次数:36次