期刊论文详细信息
BMC Biotechnology
Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction
Hualei Wang1  Huihui Sun1  Dongzhi Wei1 
[1] State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
关键词: Enantioselective hydrolysis;    Substrate specificity prediction;    Burkholderia cenocepacia J2315;    Nitrilase;    (R)-(−)-mandelic acid;   
Others  :  1123262
DOI  :  10.1186/1472-6750-13-14
 received in 2012-09-19, accepted in 2013-02-05,  发布年份 2013
PDF
【 摘 要 】

Background

A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(−)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(−)-mandelic acid without the unwanted byproduct is needed.

Results

A novel nitrilase (BCJ2315) was discovered from Burkholderia cenocepacia J2315 through phylogeny-based enzymatic substrate specificity prediction (PESSP). This nitrilase is a mandelonitrile hydrolase that could efficiently hydrolyze mandelonitrile to (R)-(−)-mandelic acid, with a high enantiomeric excess of 98.4%. No byproduct was observed in this hydrolysis process. BCJ2315 showed the highest identity of 71% compared with other nitrilases in the amino acid sequence. BCJ2315 possessed the highest activity toward mandelonitrile and took mandelonitrile as the optimal substrate based on the analysis of substrate specificity. The kinetic parameters Vmax, Km, Kcat, and Kcat/Km toward mandelonitrile were 45.4 μmol/min/mg, 0.14 mM, 15.4 s-1, and 1.1×105 M-1s-1, respectively. The recombinant Escherichia coli M15/BCJ2315 had a strong substrate tolerance and could completely hydrolyze mandelonitrile (100 mM) with fewer amounts of wet cells (10 mg/ml) within 1 h.

Conclusions

PESSP is an efficient method for discovering an ideal mandelonitrile hydrolase. BCJ2315 has high affinity and catalytic efficiency toward mandelonitrile. This nitrilase has great advantages in the production of optically pure (R)-(−)-mandelic acid because of its high activity and enantioselectivity, strong substrate tolerance, and having no unwanted byproduct. Thus, BCJ2315 has great potential in the practical production of optically pure (R)-(−)-mandelic acid in the industry.

【 授权许可】

   
2013 Wang et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150216021635856.pdf 924KB PDF download
Figure 4. 59KB Image download
Figure 3. 65KB Image download
Figure 2. 57KB Image download
Figure 1. 82KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Zhang CS, Zhang ZJ, Li CX, Yu HL, Zheng GW, Xu JH: Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from labrenzia aggregata. Appl Microbiol Biotechnol 2012, 95:91-99.
  • [2]Chen J, Zheng RC, Zheng YG, Shen YC: Microbial transformation of nitriles to high-value acids or amides. Biotechnology in China I 2009, 113:33-77.
  • [3]Wang MX: Enantioselective biotransformations of nitriles in organic synthesis. Top Catal 2005, 35:117-130.
  • [4]Groger H: Enzymatic routes to enantiomerically pure aromatic alpha-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 2001, 343:547-558.
  • [5]Terreni M, Pagani G, Ubiali D, Fernandez-Lafuente R, Mateo C, Guisan JM: Modulation of penicillin acylase properties via immobilization techniques: One-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorg Med Chem Lett 2001, 11:2429-2432.
  • [6]Furlenmeier AQP, Volger K, Lanz P: 6-Acyl derivatives of aminopenicillanic acid. US Patent Office 3957758; 1976.
  • [7]Surivet JP, Vatele JM: Total synthesis of antitumor goniothalamus styryllactones. Tetrahedron 1999, 55:13011-13028.
  • [8]Mills JSK, Shaw WN: Phenethanolamines compositions containing the same and method for effecting weight control. US Patent 4391826; 1983.
  • [9]Yadav GD, Sajgure AD, Dhoot SB: Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RS-(+/−)-methyl mandelate. J Chem Technol Biotechnol 2008, 83:1145-1153.
  • [10]Yamamoto K, Oishi K, Fujimatsu I, Komatsu K: Production of R-(−)-mandelic acid from mandelonitrile by alcaligenes faecalis ATCC 8750. Appl Environ Microbiol 1991, 57:3028-3032.
  • [11]Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY: Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from alcaligenes sp. ECU0401 And its potential for (R)-(−)-mandelic acid production. Bioprocess Biosyst Eng 2011, 34:315-322.
  • [12]Liu ZQ, Dong LZ, Cheng F, Xue YP, Wang YS, Ding JN, Zheng YG, Shen YC: Gene cloning, expression, and characterization of a nitrilase from alcaligenes faecalis ZJUTB10. J Agr Food Chem 2011, 59:11560-11570.
  • [13]Nagasawa T, Mauger J, Yamada H: A novel nitrilase, arylacetonitrilase, of alcaligenes faecalis JM3 purification and characterization. Eur J Biochem/FEBS 1990, 194:765-772.
  • [14]Singh R, Banerjee A, Kaul P, Barse B, Banerjee UC: Release of an enantioselective nitrilase from alcaligenes faecalis MTCC 126: a comparative study. Bioprocess Biosyst Eng 2005, 27:415-424.
  • [15]Kaul P, Banerjee A, Banerjee UC: Stereoselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules 2006, 7:1536-1541.
  • [16]Petrickova A, Sosedov O, Baum S, Stolz A, Martinkova L: Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from aspergillus niger and neurospora crassa. J Mol Catal B: Enzym 2012, 77:74-80.
  • [17]Kiziak C, Conradt D, Stolz A, Mattes R, Klein J: Nitrilase from pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology-Sgm 2005, 151:3639-3648.
  • [18]Martinkova L, Kren V: Biotransformations with nitrilases. Curr Opin Chem Biol 2010, 14:130-137.
  • [19]Kaul P, Banerjee A, Mayilraj S, Banerjee UC: Screening for enantioselective nitrilases: kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron-Asymmetry 2004, 15:207-211.
  • [20]Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP: Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 2004, 70:2429-2436.
  • [21]Zhu D, Mukherjee C, Biehl ER, Hua L: Discovery of a mandelonitrile hydrolase from bradyrhizobium japonicum USDA110 by rational genome mining. J Biotechnol 2007, 129:645-650.
  • [22]Seffernick JL, Samanta SK, Louie TM, Wackett LP, Subramanian M: Investigative mining of sequence data for novel enzymes: a case study with nitrilases. J Biotechnol 2009, 143:17-26.
  • [23]Kobayashi M, Nagasawa T, Yamada H: Nitrilase of rhodococcus rhodochrous J1 purification and characterization. Eur J Biochem/FEBS 1989, 182:349-356.
  • [24]Heinemann U, Engels D, Burger S, Kiziak C, Mattes R, Stolz A: Cloning of a nitrilase gene from the cyanobacterium synechocystis sp. Strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl Environ Microbiol 2003, 69:4359-4366.
  • [25]Chauhan S, Wu S, Blumerman S, Fallon RD, Gavagan JE, DiCosimo R, Payne MS: Purification, cloning, sequencing and over-expression in escherichia coli of a regioselective aliphatic nitrilase from acidovorax facilis 72W. Appl Microbiol Biotechnol 2003, 61:118-122.
  • [26]Kim JS, Tiwari MK, Moon HJ, Jeya M, Ramu T, Oh DK, Kim IW, Lee JK: Identification and characterization of a novel nitrilase from pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol 2009, 83:273-283.
  • [27]Kobayashi M, Yanaka N, Nagasawa T, Yamada H: Purification and characterization of a novel nitrilase of rhodococcus rhodochrous K22 that acts on aliphatic nitriles. J Bacteriol 1990, 172:4807-4815.
  • [28]Kaplan O, Bezouska K, Plihal O, Ettrich R, Kulik N, Vanek O, Kavan D, Benada O, Malandra A, Sveda O: Heterologous expression, purification and characterization of nitrilase from Aspergillus Niger K10. BMC Biotechnol 11:2.
  • [29]Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M: Enzymatic characterization of the recombinant arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta 2001, 212:508-516.
  • [30]Zhu DM, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L: A new nitrilase from bradyrhizobium japonicum USDA 110 - gene cloning, biochemical characterization and substrate specificity. J Biotechnol 2008, 133:327-333.
  • [31]Piotrowski M, Schonfelder S, Weiler EW: The arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-L-alanine hydratase/nitrilase. J Biol Chem 2001, 276:2616-2621.
  • [32]O'Reilly C, Turner PD: The nitrilase family of CN hydrolysing enzymes - a comparative study. J Appl Microbiol 2003, 95:1161-1174.
  • [33]Banerjee A, Kaul P, Banerjee UC: Purification and characterization of an enantioselective arylacetonitrilase from pseudomonas putida. Arch Microbiol 2006, 184:407-418.
  • [34]DeSantis G, Zhu Z, Greenberg WA, Wong K, Chaplin J, Hanson SR, Farwell B, Nicholson LW, Rand CL, Weiner DP: An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. J Am Chem Soc 2002, 124:9024-9025.
  • [35]Petrickova A, Vesela AB, Kaplan O, Kubac D, Uhnakova B, Malandra A, Felsberg J, Rinagelova A, Weyrauch P, Kren V: Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 2012, 93:1553-1561.
  • [36]Zhang ZJ, Xu JH, He YC, Ouyang LM, Liu YY, Imanaka T: Efficient production of (R)-(−)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant alcaligenes sp. Process Biochem 2010, 45:887-891.
  • [37]Brenner C: Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 2002, 12:775-782.
  • [38]Thompson JD, Higgins DG, Gibson TJ: CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994, 22:4673-4680.
  • [39]Tamura K, Dudley J, Nei M, Kumar S: MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24:1596-1599.
  • [40]Sambrook J, Fitsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor Press: Cold Spring Harbor, New York; 1989.
  • [41]Weatherburn MW: Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 1967, 39:971-974.
  • [42]Xue YP, Liu ZQ, Xu M, Wang YJ, Zheng YG: Efficient separation of (R)-(−)-mandelic acid biosynthesized from (R, S)-mandelonitrile by nitrilase using ion-exchange process. J Chem Technol Biotechnol 2011, 86:391-397.
  文献评价指标  
  下载次数:43次 浏览次数:9次