期刊论文详细信息
Sustainable Chemical Processes
Valorisation of food waste in biotechnological processes
Carol Sze Ki Lin1  Daniel Pleissner1 
[1]School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
关键词: Microalgae;    Biomass;    Biorefinery;    Nutrient source;    Food waste;   
Others  :  789173
DOI  :  10.1186/2043-7129-1-21
 received in 2013-08-30, accepted in 2013-10-21,  发布年份 2013
PDF
【 摘 要 】

Around 1.3 billion tonnes of food are wasted worldwide per year, which is originally produced under extensive use of energy and nutrients. Use of food waste as feedstock in biotechnological processes provides an innovative way to recover parts of the energy and nutrients initially spent on food production. By chemical and biological methods, food waste is hydrolysed to glucose, free amino nitrogen and phosphate, which are utilisable as nutrients by many microorganisms whose metabolic versatility enables the production of a wide range of products. Microalgae are particularly of interest as chemicals, materials and energy are obtainable from microalgal biomass after chemical and/or biological modifications. In this review, valorisation of food waste in biotechnological processes is presented as an additional option to green chemical technologies.

【 授权许可】

   
2013 Pleissner and Lin; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140704154821747.pdf 219KB PDF download
【 参考文献 】
  • [1]Gustavsson J, Cederberg C, Sonesson U, Otterdijk RV, Meybeck A: Global food losses and food waste. Extent, causes and prevention. Rome, Italy: Food and Agriculture Organization of the United Nations; 2011:38.
  • [2]Gustavsson J, Cederberg C, Sonesson U, Emanuelsson A: The methodology of the FOA study: global food losses and food waste-extent, causes and prevention. Gothenburg, Sweden: The Swedish Institute for Food and Biotechnology; 2013:70.
  • [3]Cuéllar AD, Webber ME: Wasted food, wasted energy: The embedded energy in food waste in the United States. Environ Sci Technol 2010, 44:6464-6469.
  • [4]Zilbermann D, Dale BE, Fixen PE, Havlin JL: Food, fuel, and plant nutrients use in the future. CAST Issue Paper 2013, 51:1-24.
  • [5]Sayeki M, Kitagawa T, Matsumoto M, Nishiyama A, Miyoshi K, Mochizuki M, Takasu A, Abe A: Chemical composition and energy value of dried meal from food waste as feedstuff in swine and cattle. Anim Sci J 2001, 72:34-40.
  • [6]Shin H-S, Youn J-H: Conversion of food waste into hydrogen by thermophilic acidogenesis. Biogeosciences 2005, 16:33-44.
  • [7]Argelier S, Delgenes JP, Moletta R: Design of acidogenic reactors for the anaerobic treatment of the organic fraction of solid food waste. Bioprocess Eng 1998, 18:309-315.
  • [8]Li R, Chen S, Li X: Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 2010, 160:643-654.
  • [9]Kim S, Choi K, Kim JO, Chung J: Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biogeosciences 2013, 24:753-764.
  • [10]Myer RO, Johnson DD, Boswick KK, Brendemuhl JH: Dehydration of restaurant food wastes produces a nutritious feedstuff for use in pig diets. In Utilization of Agricultural, Municipal and Industrial By-products. Edited by Brown S, Angle JS, Jacobs L. Dordrecht, Netherlands: Kluwer Academic Publisher; 1998:397-403.
  • [11]Nelson T: Closing the nutrient loop. Washington DC, USA: World watch; 1996:10-17.
  • [12]Luque R, Clark JH: Valorisation of food residues: waste to wealth using green chemical technologies. Sus Chem Proc 2013, 1:10.
  • [13]Pfaltzgraff LA, De Bruyn M, Cooper EC, Budarin V, Clark JH: Food waste biomass: a resource for high-value chemicals. Green Chem 2013, 15:307-314.
  • [14]Zhang AY-Z, Sun Z, Leung CCJ, Han W, Lau KY, Li M, Lin CSK: Valorisation of bakery waste for succinic acid production. Green Chem 2013, 15:690-695.
  • [15]Pleissner D, Lam WC, Sun Z, Lin CSK: Food waste as nutrient source in heterotrophic microalgae cultivation. Biores Technol 2013, 137:139-146.
  • [16]Yan S, Li J, Chen X, Wu J, Wang P, Ye J, Yao J: Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew Energy 2011, 36:1259-1265.
  • [17]Ryu B-G, Kim K, Kim J, Han J-I, Yang J-W: Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Biores Technol 2013, 129:351-359.
  • [18]Leung CCJ, Cheung ASY, Zhang AYZ, Lam KF, Lin CSK: Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 2012, 65:10-15.
  • [19]Li X, Xu H, Wu Q: Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 2007, 98:764-771.
  • [20]Chi Z, Zheng Y, Jiang A, Chen S: Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 2011, 165:442-453.
  • [21]Kim JH, Lee JC, Pak D: Feasibility of producing ethanol from food waste. Waste Manage 2011, 31:2121-2125.
  • [22]Yan S, Yao J, Yao L, Zhi Z, Xi C, Wu J: Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058. Braz Arch Biol Technol 2012, 55:183-192.
  • [23]Claassen PA, Budde MA, López-Contreras AM: Acetone, butanol and ethanol production from domestic organic waste by solventogenic clostridia. J Mol Microbiol Biotechnol 2000, 2:39-44.
  • [24]Hayek M, Shriner RL: Hydrolysis of starch by sulfurous acid. Ind Eng Chem 1944, 33:1001-1003.
  • [25]Lam W-C, Pleissner D, Lin SKC: Production of fungal glucoamylase for glucose production from food waste. Biogeosciences 2013, 3:651-661.
  • [26]Jin F-M, Kishita A, Moriya T, Enomoto H: Kinetics of oxidation of food wastes with H2O2 in supercritical water. J Supercrit Fluids 2001, 19:251-262.
  • [27]Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M: Fungal glucoamylases. Biotechnol Adv 2006, 24:80-85.
  • [28]Du C, Lin SKC, Koutinas A, Wang R, Dorado P, Webb C: A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Biores Technol 2008, 99:8310-8315.
  • [29]Wang R, Shaarani SM, Godoy LC, Melikoglu M, Vergara CS, Koutinas A, Webb C: Bioconversion of rapeseed meal for the production of a generic microbial feedstock. Enzyme Microb Tech 2010, 47:77-83.
  • [30]Dorado MP, Lin SKC, Koutinas A, Du C, Wang R, Webb C: Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid. J Biotechnol 2009, 143:51-59.
  • [31]Fan KW, Chen F, Jones EBG, Vrijmoed LLP: Utilization of food processing waste by Thraustochytrids. In Aquatic Mycology across the Millenium. Edited by Hyde KD, Ho WH, Pointing SB. Hong Kong: Fungal Diversity Press; 2000:185-194.
  • [32]de Swaaf ME, de Rijk TC, Eggink G, Sijtsma L: Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. Prog Ind Microbiol 1999, 35:185-192.
  • [33]Li P, Miao X, Li R, Zhong J: In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol 2011. doi:10.1155/2011/141207
  • [34]Pleissner D, Wimmer R, Eriksen NT: Quantification of amino acids in fermentation media by isochratic HPLC analysis of their α-hydroxy acid derivates. Anal Chem 2011, 83:175-181.
  • [35]Pleissner D, Eriksen NT: Effects of phosphorous, nitrogen, and carbon limitation on biomass composition in batch and continuous flow cultures of the heterotrophic dinoflagellate Crypthecodinium cohnii. Biotechnol Bioeng 2012, 109:2005-2016.
  • [36]Foley PM, Beach ES, Zimmerman JB: Algae as a source of renewable chemicals: opportunities and challenges. Green Chem 2011, 13:1399-1405.
  • [37]Lipinski ES: Chemicals from biomass. Science 1981, 212:1465-1471.
  • [38]Fogassy G, Ke P, Figueras F, Cassagnau P, Rouzeau S, Courault V, Gelbard G, Pinel C: Catalyzed ring opening of epoxides: application to bioplasticizers synthesis. Appl Catal A 2011, 393:1-8.
  • [39]Gallezot P: Conversion of biomass to selected chemical products. Chem Soc Rev 2012, 41:1538-1558.
  • [40]Lu Y, Larock RC: Aqueous cationic polyurethane dispersions from vegetable oils. ChemSusChem 2010, 3:329-333.
  • [41]Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P: Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts. Green Chem 2000, 2:89-91.
  • [42]Scott E, Peter F, Sanders J: Biomass in the manufacture of industrial products-the use of proteins and amino acids. Appl Microbiol Biotechnol 2007, 75:751-762.
  • [43]Venus L, Richter K: Production of lactic acid from barley: strain selection, phenotypic and medium optimization. Eng Life Sci 2006, 6:492-500.
  • [44]Deshpande M, Daniels L: Evaluation of sophorolipid biosurfactant production by Candida bombicola using animal fat. Biores Technol 1995, 54:143-150.
  • [45]Shah V, Jurjevic M, Badia D: Utilization of restaurant waste oil as a precursor for sophorolipid production. Biotechnol Prog 2007, 23:512-515.
  • [46]Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K: Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 2011, 91:31-46.
  • [47]Theriault RJ: Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 1965, 13:402-416.
  • [48]Shi X-M, Chen F: High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 2002, 18:723-727.
  • [49]Graverholt OS, Eriksen NT: Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 2007, 77:69-75.
  • [50]Eriksen NT: Production of phycocyanin-a pigment with applications in biology, biotechnology, foods and medicine. Appl Microbiol Biotechnol 2008, 80:1-14.
  • [51]Oi VT, Glazer AN, Stryer L: Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J Cell Biol 1982, 93:981-986.
  • [52]Prasanna R, Sood A, Suresh A, Nayak S, Kaushik B: Potentials and applications of algal pigments in biology and industry. Acta Bot Hung 2007, 49:131-156.
  • [53]Romay C, Armesto J, Remirez D, González R, Ledon N, Garcia I: Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 1998, 47:36-41.
  • [54]Metting FB Jr: Biodiversity and application of microalgae. J Ind Microbiol 1996, 17:477-489.
  • [55]Miao X, Wu Q: Biodiesel production from heterotrophic microalgal oil. Biores Technol 2006, 97:841-846.
  • [56]Puhan S, Saravanan N, Nagarajan G, Vedaraman N: Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine. Biomass Bioenerg 2010, 34:1079-1088.
  • [57]Harun R, Danquah MK, Forde GM: Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biot 2010, 85:199-203.
  • [58]Geun Goo B, Baek G, Jin Choi D, Il Park Y, Synytsya A, Bleha R, Ho Seong D, Lee C-G, Kweon Park J: Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Biores Technol 2013, 129:343-350.
  • [59]Šoštarič M, Klinar D, Bricelj M, Golob J, Berovič M, Likozar B: Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. New Biotechnol 2012, 29:325-331.
  • [60]Cheng C-H, Du T-B, Pi H-C, Jang S-M, Lin Y-H, Lee H-T: Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Biores Technol 2011, 102:10151-10153.
  • [61]Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr: Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 2005, 44:5353-5363.
  • [62]Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959, 37:911-917.
  • [63]Soh L, Zimmerman J: Biodiesel production: the potential of algal lipids extracted with supercritical carbon dioxide. Green Chem 2011, 13:1422-1429.
  • [64]Haas MJ, Wagner K: Simplifying biodiesel production: the direct or in situ transesterification of algal biomass. Eur J Lipid Sci Technol 2011, 113:1219-1229.
  • [65]Patil PD, Gude VD, Mannarswamy A, Cooke P, Nirmalakhandan N, Lammers P, Deng S: Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 2012, 97:822-831.
  • [66]Patil PD, Reddy H, Muppaneni T, Schaub T, Holguin FO, Cooke P, Lammers P, Nirmalakhandan N, Li Y, Lu X, Deng S: In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions. Biores Technol 2013, 139:308-315.
  • [67]Tran D-T, Yeh K-L, Chen C-L, Chang J-S: Enzymatic transesterification of microalgal oil from Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized Burkholderia lipase. Biores Technol 2012, 108:119-127.
  文献评价指标  
  下载次数:9次 浏览次数:44次