| Biology Direct | |
| Global analyses of Chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes | |
| Jian Wang1  Ling Ye1  Meiling Jin1  Xiangdong Wang1  | |
| [1] Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Fudan University Medical School, Shanghai, China | |
| 关键词: Lymphocytes; Airwayepithelial cells; Alveolar type II cells; Fibroblasts; Mesenchymal stem cells; Telocytes; Lung; Genes; Chromosome 18; Chromosome 17; | |
| Others : 1140411 DOI : 10.1186/s13062-015-0042-0 |
|
| received in 2014-10-09, accepted in 2015-02-10, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Background
Telocytes (TCs) is an interstitial cell with extremely long and thin telopodes (Tps) with thin segments (podomers) and dilations (podoms) to interact with neighboring cells. TCs have been found in different organs, while there is still a lack of TCs-specific biomarkers to distinguish TCs from the other cells.
Results
We compared gene expression profiles of murine pulmonary TCs on days 5 (TC5) and days 10 (TC10) with mesenchymal stem cells (MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL), and CD8+ T cells from lungs (T-LL). The chromosome 17 and 18 genes were extracted for further analysis. The TCs-specific genes and functional networks were identified and analyzed by bioinformatics tools. 16 and 10 of TCs-specific genes were up-regulated and 68 and 22 were down-regulated in chromosome 17 and 18, as compared with other cells respectively. Of them, Mapk14 and Trem2 were up-regulated to indicate the biological function of TCs in immune regulation, and up-regulated MCFD2 and down-regulated E4F1 and PDCD2 had an association with tissue homeostasis for TCs. Over-expressed Dpysl3 may promote TCs self-proliferation and cell-cell network forming.
Conclusions
The differential gene expression in chromosomes 17 and 18 clearly revealed that TCs were the distinctive type of interstitial cells. Our data also indicates that TCs may play a dual role in immune surveillance and immune homoeostasis to keep from immune disorder in acute and chronic pulmonary diseases. TCs also participated in proliferation, differentiation and regeneration.
Reviewers
This article was reviewed by Qing Kay Li and Dragos Cretoiu.
【 授权许可】
2015 Wang et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150325015029421.pdf | 3832KB | ||
| Figure 6. | 150KB | Image | |
| Figure 5. | 162KB | Image | |
| Figure 4. | 140KB | Image | |
| Figure 3. | 155KB | Image | |
| Figure 2. | 43KB | Image | |
| Figure 1. | 84KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Zheng Y, Li H, Manole CG, Sun A, Ge J, Wang X: Telocytes in trachea and lungs. J Cell Mol Med 2011, 15(10):2262-8.
- [2]Rusu MC, Jianu AM, Mirancea N, Didilescu AC, Manoiu VS, Paduraru D: Tracheal telocytes. J Cell Mol Med 2012, 16(2):401-5.
- [3]Rusu MC, Nicolescu MI, Jianu AM, Lighezan R, Manoiu VS, Paduraru D: Esophageal telocytes and hybrid morphologies. Cell Biol Int 2012, 36(12):1079-88.
- [4]Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS: Telocytes express PDGFRalpha in the human gastrointestinal tract. J Cell Mol Med 2013, 17(9):1099-108.
- [5]Xiao J, Wang F, Liu Z, Yang C: Telocytes in liver: electron microscopic and immunofluorescent evidence. J Cell Mol Med 2013, 17(12):1537-42.
- [6]Qi G, Lin M, Xu M, Manole CG, Wang X, Zhu T: Telocytes in the human kidney cortex. J Cell Mol Med 2012, 16(12):3116-22.
- [7]Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM: Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med 2014, 18(11):2157-64.
- [8]Gherghiceanu M, Popescu LM: Cardiac telocytes - their junctions and functional implications. Cell Tissue Res 2012, 348(2):265-79.
- [9]Rusu MC, Mirancea N, Manoiu VS, Valcu M, Nicolescu MI, Paduraru D: Skin telocytes. Ann Anat 2012, 194(4):359-67.
- [10]Luesma MJ, Gherghiceanu M, Popescu LM: Telocytes and stem cells in limbus and uvea of mouse eye. J Cell Mol Med 2013, 17(8):1016-24.
- [11]Gevaert T, De Vos R, Van Der Aa F, Joniau S, van den Oord J, Roskams T, et al.: Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med 2012, 16(9):2085-93.
- [12]Vannucchi MG, Traini C, Guasti D, Del PG, Faussone-Pellegrini MS: Telocytes subtypes in human urinary bladder. J Cell Mol Med 2014, 18(10):2000-8.
- [13]Cretoiu SM, Cretoiu D, Popescu LM: Human myometrium - the ultrastructural 3D network of telocytes. J Cell Mol Med 2012, 16(11):2844-9.
- [14]Corradi LS, Jesus MM, Fochi RA, Vilamaior PS, Justulin LJ, Goes RM, et al.: Structural and ultrastructural evidence for telocytes in prostate stroma. J Cell Mol Med 2013, 17(3):398-406.
- [15]Diaz-Flores L, Gutierrez R, Saez FJ, Diaz-Flores LJ, Madrid JF: Telocytes in neuromuscular spindles. J Cell Mol Med 2013, 17(4):457-65.
- [16]Popescu LM, Faussone-Pellegrini MS: TELOCYTES - a case of serendipity: the winding way from Interstitial Cells of Cajal (ICC), via Interstitial Cajal-Like Cells (ICLC) to TELOCYTES. J Cell Mol Med 2010, 14(4):729-40.
- [17]Popescu LM, Gherghiceanu M, Cretoiu D, Radu E: The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in situ. J Cell Mol Med 2005, 9(3):714-30.
- [18]Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME: Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 2011, 345(3):391-403.
- [19]Zheng Y, Bai C, Wang X: Telocyte morphologies and potential roles in diseases. J Cell Physiol 2012, 227(6):2311-7.
- [20]Cretoiu SM, Cretoiu D, Marin A, Radu BM, Popescu LM: Telocytes: ultrastructural, immunohistochemical and electrophysiological characteristics in human myometrium. Reproduction 2013, 145(4):357-70.
- [21]Suciu L, Popescu LM, Gherghiceanu M, Regalia T, Nicolescu MI, Hinescu ME, et al.: Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs 2010, 192(5):325-39.
- [22]Zheng Y, Bai C, Wang X: Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med 2012, 6(1):45-9.
- [23]Zheng YH, Li H, Ge JB, Gao HJ, Wang XD: Location of telocytes in mouse bronchial and pulmonary tissues. Zhonghua Bing Li Xue Za Zhi 2012, 41(3):172-5.
- [24]Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, et al.: Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med 2013, 17(4):567-77.
- [25]Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X: Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 2014, 18(4):568-89.
- [26]Cismasiu VB, Radu E, Popescu LM: miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 2011, 15(5):1071-4.
- [27]Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, et al.: Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 2014, 18(5):801-10.
- [28]Zheng M, Sun X, Zhang M, Qian M, Zheng Y, Li M, et al.: Variations of chromosomes 2 and 3 gene expression profiles among pulmonary telocytes, pneumocytes, airway cells, mesenchymal stem cells and lymphocytes. J Cell Mol Med 2014, 18(10):2044-60.
- [29]Gene Expression Omnibus (GEO). http://www.ncbi.nlm.nih.gov/geo/.
- [30]Genetics Home Reference. http://ghr.nlm.nih.gov.
- [31]Nusbaum C, Zody MC, Borowsky ML, Kamal M, Kodira CD, Taylor TD, et al.: DNA sequence and analysis of human chromosome 18. Nature 2005, 437(7058):551-5.
- [32]Jiang H, Bai X, Meng F, Zhang C, Zhang X: Evaluation of chromosome 17 polysomy in breast cancer by FISH analysis of whole nuclei, and its clinicopathological significance. Oncol Lett 2014, 7(6):1954-8.
- [33]Reinholz MM, Bruzek AK, Visscher DW, Lingle WL, Schroeder MJ, Perez EA, et al.: Breast cancer and aneusomy 17: implications for carcinogenesis and therapeutic response. Lancet Oncol 2009, 10(3):267-77.
- [34]Sun L, Lin J, Du H, Hu C, Huang Z, Lv Z, et al.: Gender-specific DNA methylome analysis of a Han Chinese longevity population. Biomed Res Int 2014, 2014:396727.
- [35]Gilbert F: Disease genes and chromosomes: disease maps of the human genome. Chromosome 17. Genet Test 1998, 2(4):357-81.
- [36]Gilbert F: Disease genes and chromosomes: disease maps of the human genome. Chromosome 18. Genet Test 1997, 1(1):69-71.
- [37]Cody JD, Carter EM, Sebold C, Heard PL, Hale DE: A gene dosage map of Chromosome 18: a map with clinical utility. Genet Med 2009, 11(11):778-82.
- [38]Oeztuerk-Winder F, Ventura JJ: The many faces of p38 mitogen-activated protein kinase in progenitor/stem cell differentiation. Biochem J 2012, 445(1):1-10.
- [39]Cuadrado A, Nebreda AR: Mechanisms and functions of p38 MAPK signalling. Biochem J 2010, 429(3):403-17.
- [40]Schieven GL: The p38alpha kinase plays a central role in inflammation. Curr Top Med Chem 2009, 9(11):1038-48.
- [41]Sharif O, Knapp S: From expression to signaling: roles of TREM-1 and TREM-2 in innate immunity and bacterial infection. Immunobiology 2008, 213(9–10):701-13.
- [42]Viertlboeck BC, Schmitt R, Gobel TW: The chicken immunoregulatory receptor families SIRP, TREM, and CMRF35/CD300L. Immunogenetics 2006, 58(2–3):180-90.
- [43]Turnbull IR, Gilfillan S, Cella M, Aoshi T, Miller M, Piccio L, et al.: Cutting edge: TREM-2 attenuates macrophage activation. J Immunol 2006, 177(6):3520-4.
- [44]Hamerman JA, Jarjoura JR, Humphrey MB, Nakamura MC, Seaman WE, Lanier LL: Cutting edge: inhibition of TLR and FcR responses in macrophages by triggering receptor expressed on myeloid cells (TREM)-2 and DAP12. J Immunol 2006, 177(4):2051-5.
- [45]Elmahmoudi H, Wigren E, Laatiri A, Jlizi A, Elgaaied A, Gouider E, et al.: Analysis of newly detected mutations in the MCFD2 gene giving rise to combined deficiency of coagulation factors V and VIII. Haemophilia 2011, 17(5):e923-7.
- [46]Liu H, Zhao B, Chen Y, You D, Liu R, Rong M, et al.: Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell self-renewal. Faseb J 2013, 27(8):3298-305.
- [47]Toda H, Tsuji M, Nakano I, Kobuke K, Hayashi T, Kasahara H, et al.: Stem cell-derived neural stem/progenitor cell supporting factor is an autocrine/paracrine survival factor for adult neural stem/progenitor cells. J Biol Chem 2003, 278(37):35491-500.
- [48]Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS: Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 2009, 13(5):866-86.
- [49]Marques JM, Rodrigues RJ, Valbuena S, Rozas JL, Selak S, Marin P, et al.: CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation. J Neurosci 2013, 33(46):18298-310.
- [50]Nagai J, Goshima Y, Ohshima T: CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against Vincristine-induced axonal degeneration. Neurosci Lett 2012, 519(1):56-61.
- [51]Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, et al.: E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006, 127(4):775-88.
- [52]Paul C, Lacroix M, Iankova I, Julien E, Schafer BW, Labalette C, et al.: The LIM-only protein FHL2 is a negative regulator of E4F1. Oncogene 2006, 25(40):5475-84.
- [53]Baron BW, Hyjek E, Gladstone B, Thirman MJ, Baron JM: PDCD2, a protein whose expression is repressed by BCL6, induces apoptosis in human cells by activation of the caspase cascade. Blood Cells Mol Dis 2010, 45(2):169-75.
PDF