期刊论文详细信息
BMC Cancer
Mutational analysis of the tyrosine kinome in serous and clear cell endometrial cancer uncovers rare somatic mutations in TNK2 and DDR1
Meghan L Rudd5  Hassan Mohamed5  Jessica C Price5  Andrea J O’Hara5  Matthieu Le Gallo5  Mary Ellen Urick5  NISC Comparative Sequencing Program2  Pedro Cruz1  Suiyuan Zhang1  Nancy F Hansen1  Andrew K Godwin3  Dennis C Sgroi4  Tyra G Wolfsberg1  James C Mullikin1  Maria J Merino6  Daphne W Bell5 
[1] Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892, USA
[2] NIH Intramural Sequencing Center, National Institutes of Health, Bethesda MD 20892, USA
[3] Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas KS 66160, USA
[4] Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, 149 13th Street, Charlestown MA 02129, USA
[5] Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892, USA
[6] Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD 20892, USA
关键词: Tyrosine kinome;    Tyrosine kinase;    Copy number;    DDR1;    ACK1;    TNK2;    Mutation;    Cancer;    Endometrial;   
Others  :  1117989
DOI  :  10.1186/1471-2407-14-884
 received in 2014-01-29, accepted in 2014-11-13,  发布年份 2014
PDF
【 摘 要 】

Background

Endometrial cancer (EC) is the 8th leading cause of cancer death amongst American women. Most ECs are endometrioid, serous, or clear cell carcinomas, or an admixture of histologies. Serous and clear ECs are clinically aggressive tumors for which alternative therapeutic approaches are needed. The purpose of this study was to search for somatic mutations in the tyrosine kinome of serous and clear cell ECs, because mutated kinases can point to potential therapeutic targets.

Methods

In a mutation discovery screen, we PCR amplified and Sanger sequenced the exons encoding the catalytic domains of 86 tyrosine kinases from 24 serous, 11 clear cell, and 5 mixed histology ECs. For somatically mutated genes, we next sequenced the remaining coding exons from the 40 discovery screen tumors and sequenced all coding exons from another 72 ECs (10 clear cell, 21 serous, 41 endometrioid). We assessed the copy number of mutated kinases in this cohort of 112 tumors using quantitative real time PCR, and we used immunoblotting to measure expression of these kinases in endometrial cancer cell lines.

Results

Overall, we identified somatic mutations in TNK2 (tyrosine kinase non-receptor, 2) and DDR1 (discoidin domain receptor tyrosine kinase 1) in 5.3% (6 of 112) and 2.7% (3 of 112) of ECs. Copy number gains of TNK2 and DDR1 were identified in another 4.5% and 0.9% of 112 cases respectively. Immunoblotting confirmed TNK2 and DDR1 expression in endometrial cancer cell lines. Three of five missense mutations in TNK2 and one of two missense mutations in DDR1 are predicted to impact protein function by two or more in silico algorithms. The TNK2P761Rfs*72 frameshift mutation was recurrent in EC, and the DDR1R570Q missense mutation was recurrent across tumor types.

Conclusions

This is the first study to systematically search for mutations in the tyrosine kinome in clear cell endometrial tumors. Our findings indicate that high-frequency somatic mutations in the catalytic domains of the tyrosine kinome are rare in clear cell ECs. We uncovered ten new mutations in TNK2 and DDR1 within serous and endometrioid ECs, thus providing novel insights into the mutation spectrum of each gene in EC.

【 授权许可】

   
2014 Rudd et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206015034191.pdf 428KB PDF download
Figure 2. 48KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Dedes KJ, Wetterskog D, Ashworth A, Kaye SB, Reis-Filho JS: Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol 2011, 8:261-271.
  • [2]Mahboubi E, Eyler N, Wynder EL: Epidemiology of cancer of the endometrium. Clin Obstet Gynecol 1982, 25:5-17.
  • [3]Dinkelspiel HE, Wright JD, Lewin SN, Herzog TJ: Contemporary clinical management of endometrial cancer. Obstet Gynecol Int 2013, 2013:583891.
  • [4]Zighelboim I, Powell MA: Adjuvant treatment for early-stage endometrial cancer. Clin Obstet Gynecol 2011, 54:245-255.
  • [5]Trope C, Kristensen GB, Abeler VM: Clear-cell and papillary serous cancer: treatment options. Best Pract Res Clin Obstet Gynaecol 2001, 15:433-446.
  • [6]Hamilton CA, Cheung MK, Osann K, Chen L, Teng NN, Longacre TA, Powell MA, Hendrickson MR, Kapp DS, Chan JK: Uterine papillary serous and clear cell carcinomas predict for poorer survival compared to grade 3 endometrioid corpus cancers. Brit J Cancer 2006, 94:642-646.
  • [7]Sherman ME: Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol 2000, 13:295-308.
  • [8]Webb GA, Lagios MD: Clear cell carcinoma of the endometrium. Am J Obstet Gynecol 1987, 156:1486-1491.
  • [9]Setiawan VW, Yang HP, Pike MC, McCann SE, Yu H, Xiang YB, Wolk A, Wentzensen N, Weiss NS, Webb PM, van den Brandt PA, van de Vijver K, Thompson PJ, Strom BL, Spurdle AB, Soslow RA, Shu XO, Schairer C, Sacerdote C, Rohan TE, Robien K, Risch HA, Ricceri F, Rebbeck TR, Rastogi R, Prescott J, Polidoro S, Park Y, Olson SH, Moysich KB, et al.: Type I and II endometrial cancers: have they different risk factors? J Clin Oncol 2013, 31:2607-2618.
  • [10]del Carmen MG, Birrer M, Schorge JO: Uterine papillary serous cancer: a review of the literature. Gynecol Oncol 2012, 127:651-661.
  • [11]Gadducci A, Cosio S, Spirito N, Cionini L: Clear cell carcinoma of the endometrium: a biological and clinical enigma. Anticancer Res 2010, 30:1327-1334.
  • [12]Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004, 350:2129-2139.
  • [13]Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M: Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001, 344:1038-1042.
  • [14]Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL: Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001, 344:1031-1037.
  • [15]Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M: EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004, 304:1497-1500.
  • [16]Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SH, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan W, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, et al.: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010, 363:1693-1703.
  • [17]Weinstein IB: Cancer. Addiction to oncogenes–the Achilles heal of cancer. Science 2002, 297:63-64.
  • [18]Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, Nicoletti R, Winckler W, Grewal R, Hanna M, Wyhs N, Ziaugra L, Richter DJ, Trovik J, Engelsen IB, Stefansson IM, Fennell T, Cibulskis K, Zody MC, Akslen LA, Gabriel S, Wong KK, Sellers WR, Meyerson M, Greulich H: Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci U S A 2008, 105:8713-8717.
  • [19]Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, Price JC, Zhang S, England BM, Godwin AK, Sgroi DC, Hieter P, Mullikin JC, Merin MJ, Bell DW: Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nat Genet 2012, 44:1310-1315.
  • [20]Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, Guo W, Scherer SE, Carter H, Westin SN, Dyer MD, Verhaak RG, Zhang F, Karchin R, Liu CG, Lu KH, Broaddus RR, Scott KL, Hennessy BT, Mills GB: Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res 2012, 22:2120-2129.
  • [21]Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, Benz CC, Yau C, Laird PW, Ding L, Zhang W, Mills GB, Kucherlapati R, Mardis ER, Levine DA, The Cancer Genome Atlas Research Network: Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497:67-73.
  • [22]Kinde I, Bettegowda C, Wang Y, Wu J, Agrawal N, Shih Ie M, Kurman R, Dao F, Levine DA, Giuntoli R, Roden R, Eshleman JR, Carvalho JP, Marie SK, Papadopoulos N, Kinzler KW, Vogelstein B, Diaz LA Jr: Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med 2013, 5:167ra164.
  • [23]Kuhn E, Wu RC, Guan B, Wu G, Zhang J, Wang Y, Song L, Yuan X, Wei L, Roden RB, Kuo KT, Nakayama K, Clarke B, Shaw P, Olvera N, Kurman RJ, Levine DA, Wang TL, Shih Ie M: Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst 2012, 104:1503-1513.
  • [24]Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, Guzzo F, English DP, Varughese J, Gasparrini S, Bortolomai I, Buza N, Hui P, Abu-Khalaf M, Ravaggi A, Bignotti E, Bandiera E, Romani C, Todeschini P, Tassi R, Zanotti L, Carrara L, Pecorelli S, Silasi DA, Ratner E, Azodi M, Schwartz PE, Rutherford TJ, Stiegler AL, Mane S, et al.: Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma. Proc Natl Acad Sci U S A 2013, 110:2916-2912.
  • [25]Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, Bhan MK, Calvo F, Eerola I, Gerhard DS, Guttmacher A, Guyer M, Hemsley FM, Jennings JL, Kerr D, Klatt P, Kolar P, Kusada J, Lane DP, Laplace F, Youyong L, Nettekoven G, Ozenberger B, Peterson J, Rao TS, Remacle J, Schafer AJ, Shibata T, Stratton MR, Vockley JG, et al.: International network of cancer genome projects. Nature 2010, 464:993-998.
  • [26]Chines P, Swift A, Bonnycastle LL, Erdos MR, Mullikin J, Collins FS, NISC: PrimerTile: designing overlapping PCR primers for resequencing. Am J Hum Genet 2005, 77:1257.
  • [27]Rice JC, Pollock LM, Rudd ML, Fogoros SK, Mohamed H, Hanigan CL, Le Gallo M, Program NI, Zhang S, Cruz P, Cherukuri PF, Hansen NF, McManus KJ, Godwin AK, Sgroi DC, Mullikin JC, Merino MJ, Hieter P, Bell DW: Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A. PLoS One 2013, 8:e63313.
  • [28]Way DL, Grosso DS, Davis JR, Surwit EA, Christian CD: Characterization of a new human endometrial carcinoma (RL95-2) established in tissue culture. In vitro 1983, 19:147-158.
  • [29]Richardson GS, Dickersin GR, Atkins L, MacLaughlin DT, Raam S, Merk LP, Bradley FM: KLE: a cell line with defective estrogen receptor derived from undifferentiated endometrial cancer. Gynecol Oncol 1984, 17:213-230.
  • [30]Kurarmoto H, Hamano M, Imai M: HEC-1 cells. Hum Cell 2002, 15:81-95.
  • [31]Satyaswaroop PG, Fleming H, Bressler RS, Gurpide E: Human endometrial cancer cell cultures for hormonal studies. Cancer Res 1978, 38:4367-4375.
  • [32]Kuramoto H: Studies of the growth and cytogenetic properties of human endometrial adenocarcinoma in culture and its development into an established line. Acta Obstet Gynaecol Jpn 1972, 19:47-58.
  • [33]Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, et al.: Mutations of the BRAF gene in human cancer. Nature 2002, 417:949-954.
  • [34]Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012, 2:401-404.
  • [35]Galisteo ML, Yang Y, Urena J, Schlessinger J: Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A 2006, 103:9796-9801.
  • [36]Manser E, Leung T, Salihuddin H, Tan L, Lim L: A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature 1993, 363:364-367.
  • [37]van der Horst EH, Degenhardt YY, Strelow A, Slavin A, Chinn L, Orf J, Rong M, Li S, See LH, Nguyen KQ, Hoey T, Wesche H, Powers S: Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A 2005, 102:15901-15906.
  • [38]Shen F, Lin Q, Gu Y, Childress C, Yang W: Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell 2007, 18:732-742.
  • [39]Lin Q, Wang J, Childress C, Sudol M, Carey DJ, Yang W: HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-induced degradation of EGF receptor and ACK. Mol Cell Biol 2010, 30:1541-1554.
  • [40]Modzelewska K, Newman LP, Desai R, Keely PJ: Ack1 mediates Cdc42-dependent cell migration and signaling to p130Cas. J Biol Chem 2006, 281:37527-37535.
  • [41]Mahajan K, Mahajan NP: Shepherding AKT and androgen receptor by Ack1 tyrosine kinase. J Cell Physiol 2010, 224:327-333.
  • [42]Vogel W: Discoidin domain receptors: structural relations and functional implications. FASEB J 1999, 13(Suppl):S77-S82.
  • [43]Curat CA, Vogel WF: Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol 2002, 13(11):2648-2656.
  • [44]Yeh YC, Wu CC, Wang YK, Tang MJ: DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 2011, 22:940-953.
  • [45]Valencia K, Ormazabal C, Zandueta C, Luis-Ravelo D, Anton I, Pajares MJ, Agorreta J, Montuenga LM, Martinez-Canarias S, Leitinger B, Lecanda F: Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res 2012, 18:969-980.
  • [46]Wang CZ, Hsu YM, Tang MJ: Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel. J Cell Physiol 2005, 203:295-304.
  • [47]Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW: DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem 2011, 286:17672-17681.
  • [48]Hou G, Vogel W, Bendeck MP: The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 2001, 107:727-735.
  • [49]Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, Sahai E: Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 2011, 13:49-58.
  • [50]Hou G, Vogel WF, Bendeck MP: Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res 2002, 90:1147-1149.
  • [51]Kamohara H, Yamashiro S, Galligan C, Yoshimura T: Discoidin domain receptor 1 isoform-a (DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J 2001, 15:2724-2726.
  • [52]Bhatt RS, Tomoda T, Fang Y, Hatten ME: Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons. Gene Dev 2000, 14:2216-2228.
  • [53]Vogel WF, Aszodi A, Alves F, Pawson T: Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 2001, 21:2906-2917.
  • [54]Lougheed JC, Chen RH, Mak P, Stout TJ: Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem 2004, 279:44039-44045.
  • [55]Teo M, Tan L, Lim L, Manser E: The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem 2001, 276:18392-18398.
  • [56]Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E: Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem 2009, 284:8185-8194.
  • [57]Prieto-Echague V, Gucwa A, Brown DA, Miller WT: Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochem 2010, 11:42. BioMed Central Full Text
  • [58]Chan W, Sit ST, Manser E: The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J 2011, 435:355-364.
  • [59]Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, Davis S, Stemke-Hale K, Davies MA, Gershenwald JE, Robinson W, Robinson S, Rosenberg SA, Samuels Y: Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet 2011, 43:442-446.
  • [60]Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N: Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013, 6:pl1.
  文献评价指标  
  下载次数:31次 浏览次数:24次