期刊论文详细信息
Biology Direct
Molecular complementarity between simple, universal molecules and ions limited phenotype space in the precursors of cells
Robert Root-Bernstein1  Kazuei Igarashi2  Rosetta N Reusch4  Vic Norris3 
[1]Department of Physiology, Michigan State University, East Lansing 48824, MI, USA
[2]Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku 260-0856, Chiba, Japan
[3]Department of Biology, University of Rouen, Mont Saint Aignan, 76821, France
[4]Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing 48824, MI, USA
关键词: RNA;    DNA;    Complementarity;    Polymer;    Cation;    Network;    Hyperstructure;    Protein kinase;    Origin of life;   
Others  :  1084067
DOI  :  10.1186/s13062-014-0028-3
PDF
【 摘 要 】

Background

Fundamental problems faced by the protocells and their modern descendants include how to go from one phenotypic state to another; escape from a basin of attraction in the space of phenotypes; reconcile conflicting growth and survival strategies (and thereby live on ‘the scales of equilibria’); and create a coherent, reproducible phenotype from a multitude of constituents.

Presentation of the hypothesis

The solutions to these problems are likely to be found with the organic and inorganic molecules and inorganic ions that constituted protocells, which we term SUMIs for Simple Universal Molecules and Ions. These SUMIs probably included polyphosphate (PolyP) as a source of energy and of phosphate; poly-(R)-3-hydroxybutyrate (PHB) as a source of carbon and as a transporter in association with PolyP; polyamines as a source of nitrogen; lipids as precursors of membranes; as well as peptides, nucleic acids, and calcium. Here, we explore the hypothesis that the direct interactions between PHB, PolyP, polyamines and lipids – modulated by calcium – played a central role in solving the fundamental problems faced by early and modern cells.

Testing the hypothesis

We review evidence that SUMIs (1) were abundant and available to protocells; (2) are widespread in modern cells; (3) interact with one another and other cellular constituents to create structures with new functions surprisingly similar to those of proteins and RNA; (4) are essential to creating coherent phenotypes in modern bacteria. SUMIs are therefore natural candidates for reducing the immensity of phenotype space and making the transition from a “primordial soup” to living cells.

Implications of the hypothesis

We discuss the relevance of the SUMIs and their interactions to the ideas of molecular complementarity, composomes (molecular aggregates with hereditary properties based on molecular complementarity), and a prebiotic ecology of co-evolving populations of composomes. In particular, we propose that SUMIs might limit the initial phenotype space of composomes in a coherent way. As examples, we propose that acidocalcisomes arose from interactions and self-selection among SUMIs and that the phosphorylation of proteins in modern cells had its origin in the covalent modification of proteins by PHB.

Reviewers

This article was reviewed by Doron Lancet and Kepa Ruiz-Mirazo.

【 授权许可】

   
2014 Norris et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113144110468.pdf 436KB PDF download
【 参考文献 】
  • [1]Kauffman S: At Home in the Universe, the Search for the Laws of Complexity. Penguin, London; 1996.
  • [2]Norris V, Nana GG, Audinot JN: New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci 2014, 133(1):47-61. http://www.ncbi.nlm.nih.gov/pubmed/23794321
  • [3]Norris V, Blaauwen TD, Doi RH, Harshey RM, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M Jr, Skarstad K, Thellier M: Toward a hyperstructure taxonomy. Annu Rev Microbiol 2007, 61:309-329.
  • [4]Root-Bernstein RS, Dillon PF: Molecular complementarity I: the complementarity theory of the origin and evolution of life. J Theor Biol 1997, 188:447-479.
  • [5]Shapiro R: Small molecule interactions were central to the origin of life. Q Rev Biol 2006, 81:105-125.
  • [6]Norris V, Amar P: Chromosome replication in Escherichia coli: life on the scales. Life 2012, 2:286-312.
  • [7]Bowman GR, Perez AM, Ptacin JL, Ighodaro E, Folta-Stogniew E, Comolli LR, Shapiro L: Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold. Mol Microbiol 2013, 90:776-795.
  • [8]Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R: Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 2006, 28:399-412.
  • [9]Segre D, Ben-Eli D, Lancet D: Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci U S A 2000, 97:4112-4117.
  • [10]Raine DJ, Norris V: Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J Theor Biol 2007, 246:176-185.
  • [11]Norris V, Raine DJ: A fission-fusion origin for life. Orig Life Evol Biosph 1998, 28:523-537.
  • [12]de Duve C: A research proposal on the origin of life. Orig Life Evol Biosph 2003, 33:559-574.
  • [13]Kornberg A: Abundant microbial inorganic polyphosphate, poly P kinase are underappreciated. Microbe 2008, 3:119-123.
  • [14]Rao NN, Gomez-Garcia MR, Kornberg A: Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 2009, 78:605-647.
  • [15]Das S, Lengweiler UD, Seebach D, Reusch RN: Proof for a nonproteinaceous calcium-selective channel in Escherichia coli by total synthesis from (R)-3-hydroxybutanoic acid and inorganic phosphate. Proc Natl Acad Sci U S A 1997, 94:9075-9079.
  • [16]Reusch RN, Huang R, Kosk-Kosicka D: Novel components and enzymatic activities of the human erythrocyte plasma membrane calcium pump. FEBS Lett 1997, 412:592-596.
  • [17]Huang R, Reusch RN: Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 1996, 271:22196-22202.
  • [18]Reusch R, Shabalin O, Crumbaugh A, Wagner R, Schroder O, Wurm R: Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). FEBS Lett 2002, 527:319-322.
  • [19]Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D: PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 2012, 12:262.
  • [20]Igarashi K, Kashiwagi K: Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J Biochem (Tokyo) 2006, 139:11-16.
  • [21]Groppa MD, Benavides MP: Polyamines and abiotic stress: recent advances. Amino Acids 2008, 34:35-45.
  • [22]Root-Bernstein R: A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res 2012, 45:2169-2177.
  • [23]Seufferheld M, Lea CR, Vieira M, Oldfield E, Docampo R: The H(+)-pyrophosphatase of Rhodospirillum rubrum is predominantly located in polyphosphate-rich acidocalcisomes. J Biol Chem 2004, 279:51193-51202.
  • [24]Brock J, Rhiel E, Beutler M, Salman V, Schulz-Vogt HN: Unusual polyphosphate inclusions observed in a marine Beggiatoa strain. Antonie Van Leeuwenhoek 2012, 101:347-357.
  • [25]Docampo R, Moreno SN: Acidocalcisomes. Cell Calcium 2011, 50:113-119.
  • [26]Cabrera JE, Jin DJ: The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 2003, 50:1493-1505.
  • [27]Fraley CD, Rashid MH, Lee SS, Gottschalk R, Harrison J, Wood PJ, Brown MR, Kornberg A: A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc Natl Acad Sci U S A 2007, 104:3526-3531.
  • [28]Kowalczyk TH, Horn PJ, Pan WH, Phillips NF: Initial rate and equilibrium isotope exchange studies on the ATP-dependent activity of polyphosphate Glucokinase from Propionibacterium shermanii. Biochemistry 1996, 35:6777-6785.
  • [29]Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K: Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 2003, 69:3849-3857.
  • [30]Kawai S, Mukai T, Mori S, Mikami B, Murata K: Hypothesis: structures, evolution, and ancestor of glucose kinases in the hexokinase family. J Biosci Bioeng 2005, 99:320-330.
  • [31]Kuroda A, Nomura K, Ohtomo R, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kornberg A: Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science (New York, NY 2001) 2001, 293:705-708.
  • [32]Yang ZX, Zhou YN, Yang Y, Jin DJ: Polyphosphate binds to the principal sigma factor of RNA polymerase during starvation response in Helicobacter pylori. Mol Microbiol 2010, 77:618-627.
  • [33]Maier SK, Scherer S, Loessner MJ: Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol 1999, 65:3942-3949.
  • [34]Boutte CC, Henry JT, Crosson S: ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 2012, 194:28-35.
  • [35]Buzoleva LS, Krivosheeva AM, Isachenko AS, Somova LM, Somov GP: Effect of temperature on synthesis of polyphosphates in Yersinia pseudotuberculosis and Listeria monocytogenes under starvation conditions. Biochemistry (Mosc) 2006, 71:437-440.
  • [36]Sukenik A, Kaplan-Levy RN, Welch JM, Post AF: Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J 2012, 6:670-679.
  • [37]Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM: Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2006, 72:1099-1106.
  • [38]Theodorou EC, Theodorou MC, Kyriakidis DA: AtoSC two-component system is involved in cPHB biosynthesis through fatty acid metabolism in E. coli. Biochim Biophys Acta 1810, 2011:561-568.
  • [39]Reusch RN, Hiske TW, Sadoff HL: Poly-β-hydroxybutyrate membrane structure and its relationship to genetic transformability in Escherichia coli. J Bacteriol 1986, 168:553-562.
  • [40]Reusch RN: Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. Proc Soc Exp Biol Med 1989, 191:377-381.
  • [41]Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, French RJ: A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 2005, 88:2614-2625.
  • [42]Reusch RN: Ion recognition and transport by poly-(R)-3-hydroxybutyrates and inorganic polyphosphates. Adv Supramol Chem 2000, 7:49-98.
  • [43]Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T: Inorganic polyphosphate modulates TRPM8 channels. PLoS ONE 2009, 4:e5404.
  • [44]Negoda A, Negoda E, Reusch RN: Importance of oligo-R-3-hydroxybutyrates to S. lividans KcsA channel structure and function. Mol BioSyst 2010, 6:2249-2255.
  • [45]Cao C, Yudin Y, Bikard Y, Chen W, Liu T, Li H, Jendrossek D, Cohen A, Pavlov E, Rohacs T, Zakharian E: Polyester modification of the mammalian TRPM8 channel protein: implications for structure and function. Cell Rep 2013, 4:302-315.
  • [46]Reusch RN, Sadoff HL: Putative structure and functions of a poly-ß-hydroxybutyrate/calcium phosphate channel in bacterial plasma membranes. Proc Natl Acad Sci U S A 1988, 85:4176-4180.
  • [47]Inouye S, Jain R, Ueki T, Nariya H, Xu CY, Hsu MY, Fernandez-Luque BA, Munoz-Dorado J, Farez-Vidal E, Inouye M: A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb Comp Genomics 2000, 5:103-120.
  • [48]Bechet E, Guiral S, Torres S, Mijakovic I, Cozzone AJ, Grangeasse C: Tyrosine-kinases in bacteria: from a matter of controversy to the status of key regulatory enzymes. Amino Acids 2009, 37:499-507.
  • [49]Soares NC, Spat P, Krug K, Macek B: Global dynamics of the Escherichia coli Proteome and phosphoproteome during growth in minimal medium. J Proteome Res 2013, 12(6):2611-2621. doi:10.1021/pr3011843
  • [50]Negoda A, Negoda E, Reusch RN: Oligo-(R)-3-hydroxybutyrate modification of sorting signal enables pore formation by Escherichia coli OmpA. Biochim Biophys Acta 2010, 1798:1480-1484.
  • [51]Wu G, Morris SM Jr: Arginine metabolism: nitric oxide and beyond. Biochem J 1998, 336(Pt 1):1-17.
  • [52]Joshi GS, Spontak JS, Klapper DG, Richardson AR: Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol Microbiol 2011, 82:9-20.
  • [53]Miyamoto S, Kashiwagi K, Ito K, Watanabe S, Igarashi K: Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 1993, 300:63-68.
  • [54]Matthews HR: Polyamines, chromatin structure and transcription. Bioessays 1993, 15:561-566.
  • [55]Morgan JE, Blankenship JW, Matthews HR: Polyamines and acetylpolyamines increase the stability and alter the conformation of nucleosome core particles. Biochemistry 1987, 26:3643-3649.
  • [56]Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K: Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and omega protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol 2012, 44:412-422.
  • [57]Jung IL, Oh TJ, Kim IG: Abnormal growth of polyamine-deficient Escherichia coli mutant is partially caused by oxidative stress-induced damage. Arch Biochem Biophys 2003, 418:125-132.
  • [58]Wortham BW, Patel CN, Oliveira MA: Polyamines in bacteria: pleiotropic effects yet specific mechanisms. Adv Exp Med Biol 2007, 603:106-115.
  • [59]Song Y, Kirkpatrick LL, Schilling AB, Helseth DL, Chabot N, Keillor JW, Johnson GV, Brady ST: Transglutaminase and polyamination of tubulin: posttranslational modification for stabilizing axonal microtubules. Neuron 2013, 78:109-123.
  • [60]Filippou PS, Lioliou EE, Panagiotidis CA, Athanassopoulos CM, Garnelis T, Papaioannou D, Kyriakidis DA: Effect of polyamines and synthetic polyamine-analogues on the expression of antizyme (AtoC) and its regulatory genes. BMC Biochem 2007, 8:1.
  • [61]Di Paolo ML, Corazza A, Scarpa M, Stevanato R, Rigo A: Effect of polyphosphates on the activity of amine oxidases. Biochim Biophys Acta 1995, 1247:246-252.
  • [62]Motomura K, Takiguchi N, Ohtake H, Kuroda A: Polyamines affect polyphosphate accumulation in Escherichia coli. J Environ Biotechnol 2006, 6:41-46.
  • [63]Hargreaves WR, Mulvihill SJ, Deamer DW: Synthesis of phospholipids and membranes in prebiotic conditions. Nature 1977, 266:78-80.
  • [64]Mansy SS, Schrum JP, Krishnamurthy M, Tobe S, Treco DA, Szostak JW: Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454:122-125.
  • [65]Budin I, Prwyes N, Zhang N, Szostak JW: Chain-length heterogeneity allows for the assembly of Fatty Acid vesicles in dilute solutions. Biophys J 2014, 107:1582-1590.
  • [66]de Souza TP, Stano P, Steiniger F, D’Aguanno E, Altamura E, Fahr A, Luisi PL: Encapsulation of ferritin, ribosomes, and ribo-peptidic complexes inside liposomes: insights into the origin of metabolism. Orig Life Evol Biosph 2012, 42:421-428.
  • [67]Fishov I, Norris V: Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr Opin Microbiol 2012, 15:724-730.
  • [68]Yung MW, Green C: The binding of polyamines to phospholipid bilayers. Biochem Pharmacol 1986, 35:4037-4041.
  • [69]Schuber F: Influence of polyamines on membrane functions. Biochem J 1989, 260:1-10.
  • [70]Mager J: The stabilizing effect of spermine and related polyamines and bacterial protoplasts. Biochim Biophys Acta 1959, 36:529-531.
  • [71]Tabor CW: Stabilization of protoplasts and spheroplasts by spermine and other polyamines. J Bacteriol 1962, 83:1101-1111.
  • [72]Harold FM: Stabilization of streptococcus faecalis protoplasts by spermine. J Bacteriol 1964, 88:1416-1420.
  • [73]Ballas SK, Mohandas N, Marton LJ, Shohet SB: Stabilization of erythrocyte membranes by polyamines. Proc Natl Acad Sci U S A 1983, 80:1942-1946.
  • [74]Kitada M, Igarashi K, Hirose S, Kitagawa H: Inhibition by polyamines of lipid peroxide formation in rat liver microsomes. Biochem Biophys Res Commun 1979, 87:388-394.
  • [75]Tadolini B, Cabrini L, Landi L, Varani E, Pasquali P: Polyamine binding to phospholipid vesicles and inhibition of lipid peroxidation. Biochem Biophys Res Commun 1984, 122:550-555.
  • [76]Zheliaskova A, Naydenova S, Petrov AG: Interaction of phospholipid bilayers with polyamines of different length. Eur Biophys J 2000, 29:153-157.
  • [77]Bratton DL, Fadok VA, Richter DA, Kailey JM, Frasch SC, Nakamura T, Henson PM: Polyamine regulation of plasma membrane phospholipid flip-flop during apoptosis. J Biol Chem 1999, 274:28113-28120.
  • [78]Michiels J, Xi C, Verhaert J, Vanderleyden J: The functions of Ca(2+) in bacteria: a role for EF-hand proteins? Trends Microbiol 2002, 10:87-93.
  • [79]Dominguez DC: Calcium signalling in bacteria. Mol Microbiol 2004, 54:291-297.
  • [80]Corbridge DEC: Phosphorus. An outline of its chemistry, biochemistry and technology. Stud Inorg Chem 1985, 6:170-178.
  • [81]Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI: Calcium signalling in bacteria. J Bacteriol 1996, 178:3677-3682.
  • [82]Hu Y, Zhang X, Shi Y, Zhou Y, Zhang W, Su XD, Xia B, Zhao J, Jin C: Structures of Anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation. J Biol Chem 2011, 286:12381-12388.
  • [83]Wang SL, Fan KQ, Yang X, Lin ZX, Xu XP, Yang KQ: CabC, an EF-hand calcium-binding protein, is involved in Ca2+−mediated regulation of spore germination and aerial hypha formation in Streptomyces coelicolor. J Bacteriol 2008, 190:4061-4068.
  • [84]Sarkisova S, Patrauchan MA, Berglund D, Nivens DE, Franklin MJ: Calcium-induced virulence factors associated with the extracellular matrix of mucoid Pseudomonas aeruginosa biofilms. J Bacteriol 2005, 187:4327-4337.
  • [85]Bilecen K, Yildiz FH: Identification of a calcium-controlled negative regulatory system affecting Vibrio cholerae biofilm formation. Environ Microbiol 2009, 11:2015-2029.
  • [86]Boyd CD, Chatterjee D, Sondermann H, O’Toole GA: LapG, required for modulating biofilm formation by Pseudomonas fluorescens p f0–1, is a calcium-dependent protease. J Bacteriol 2012, 194:4406-4414.
  • [87]Tisa LS, Sekelsky JJ, Adler J: Effects of organic antagonists of Ca(2+), Na(+), and K(+) on chemotaxis and motility of escherichia coli. J Bacteriol 2000, 182:4856-4861.
  • [88]Gode-Potratz CJ, Chodur DM, McCarter LL: Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J Bacteriol 2010, 192:6025-6038.
  • [89]Ligtenberg KG, Miller NC, Mitchell A, Plano GV, Schneewind O: LcrV mutants that abolish Yersinia type III injectisome function. J Bacteriol 2013, 195:777-787.
  • [90]Leganes F, Forchhammer K, Fernandez-Pinas F: Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. Microbiology (Reading, England) 2009, 155:25-34.
  • [91]Barran-Berdon AL, Rodea-Palomares I, Leganes F, Fernandez-Pinas F: Free Ca2+ as an early intracellular biomarker of exposure of cyanobacteria to environmental pollution. Anal Bioanal Chem 2011, 400:1015-1029.
  • [92]Manning GS: Counterion condensation on charged spheres, cylinders, and planes. J Phys Chem B 2007, 111:8554-8559.
  • [93]Todd BA, Rau DC: Interplay of ion binding and attraction in DNA condensed by multivalent cations. Nucleic Acids Res 2008, 36:501-510.
  • [94]Popp D, Iwasa M, Erickson HP, Narita A, Maeda Y, Robinson RC: Suprastructures and dynamic properties of Mycobacterium tuberculosis FtsZ. J Biol Chem 2010, 285:11281-11289.
  • [95]Ripoll C, Norris V, Thellier M: Ion condensation and signal transduction. BioEssays 2004, 26:549-557.
  • [96]von Hippel PH: From “simple” DNA-protein interactions to the macromolecular machines of gene expression. Annu Rev Biophys Biomol Struct 2007, 36:79-105.
  • [97]Theodorou MC, Tiligada E, Kyriakidis DA: Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoS-AtoC system in Escherichia coli. Biochem J 2009, 417:667-672.
  • [98]Theodorou MC, Kyriakidis DA: Calcium channels blockers inhibit the signal transduction through the AtoSC system in Escherichia coli. Eur J Pharm Sci 2012, 47:84-96.
  • [99]Abramov AY, Fraley C, Diao CT, Winkfein R, Colicos MA, Duchen MR, French RJ, Pavlov E: Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A 2007, 104:18091-18096.
  • [100]Haverstick DM, Glaser M: Visualization of Ca2+-induced phospholipid domains. Proc Natl Acad Sci U S A 1987, 84:4475-4479.
  • [101]Ravoo BJ, Stuart MC, Brisson AD, Weringa WD, Engberts JB: Electron microscopic investigation of the morphology and calcium-induced fusion of lipid vesicles with an oligomerised inner leaflet. Chem Phys Lipids 2001, 109:63-74.
  • [102]Spinler K, Tian A, Christian DA, Pantano DA, Baumgart T, Discher DE: Dynamic domains in polymersomes: mixtures of polyanionic and neutral diblocks respond more rapidly to changes in calcium than to pH. Langmuir 2013, 29(24):7499-7508. doi: 10.1021/la304602e
  • [103]Norris V: Phospholipid domains determine the spatial organization of the Escherichia coli cell cycle : the membrane tectonics model. J Theor Biol 1992, 154:91-107.
  • [104]Fishov I, Woldringh C: Visualization of membrane domains in Escherichia coli. Mol Microbiol 1999, 32:1166-1172.
  • [105]Yu X-C, Margolin W: Ca2+-mediated GTP-dependent assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 1997, 16:5455-5463.
  • [106]Freestone P, Grant S, Trinei M, Onoda T, Norris V: Protein phosphorylation in Escherichia coli L-form NC-7. Microbiology (Reading, England) 1998, 144:3289-3295.
  • [107]Briers Y, Staubli T, Schmid MC, Wagner M, Schuppler M, Loessner MJ: Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PLoS ONE 2012, 7:e38514.
  • [108]Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V: Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol 2000, 182:1419-1422.
  • [109]Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J: Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457:849-853.
  • [110]Naseem R, Wann KT, Holland IB, Campbell AK: ATP regulates calcium efflux and growth in E. coli. J Mol Biol 2009, 391:42-56.
  • [111]Karkare S, Yousafzai F, Mitchenall LA, Maxwell A: The role of Ca(2)(+) in the activity of Mycobacterium tuberculosis DNA gyrase. Nucleic Acids Res 2012, 40:9774-9787.
  • [112]Zakharov SD, Li X, Red’ko TP, Dilley RA: Calcium binding to the subunit c of E. coli ATP-synthase and possible functional implications in energy coupling. J Bioenerg Biomembr 1996, 28:483-494.
  • [113]Netz RR, Andelman D, Orland H: Protein adsorption on lipid monolayers at their coexistence region. J Phys II France 1996, 6:1023-1047.
  • [114]Deschrevel B, Dugast J-Y, Vincent J-C: Gram-scale enzymatic synthesis of a peptide bond. C R Acad Sci 1992, 314:519-525.
  • [115]Hitz T, Luisi PL: Liposome-assisted selective polycondensation of alpha-amino acids and peptides. Biopolymers 2000, 55:381-390.
  • [116]Milstien S, Cohen LA: Rate acceleration by stereopopulation control: models for enzyme action. Proc Natl Acad Sci U S A 1970, 67:1143-1147.
  • [117]Docampo R, de Souza W, Miranda K, Rohloff P, Moreno SN: Acidocalcisomes - conserved from bacteria to man. Nat Rev Microbiol 2005, 3:251-261.
  • [118]Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anolles G: Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct 2011, 6:50.
  • [119]Woldringh CL, Nanninga N: Structure of the Nucleoid and Cytoplasm in the Intact Cell. In Molecular Cytology of Escherichia Coli. Edited by Nanninga N. Academic Press, London; 1985:161-197.
  • [120]Cabrera JE, Cagliero C, Quan S, Squires CL, Jin DJ: Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 2009, 191:4180-4185.
  • [121]Mayer F: Cytoskeletons in prokaryotes. Cell Biol Int 2003, 27:429-438.
  • [122]Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL: Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci U S A 2010, 107:3163-3168.
  • [123]Norris V, den Blaauwen T, Cabin-Flaman A, Doi RH, Harshey R, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Saier M Jr, Skarstad K: Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 2007, 71:230-253.
  • [124]Chai Q, Singh B, Peisker K, Metzendorf N, Ge X, Dasgupta S, Sanyal S: Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. J Biol Chem 2014, 289:11342-11352.
  • [125]Norris V, Manners B: Deformations in the cytoplasmic membrane of Escherichia coli direct the synthesis of peptidoglycan. The hernia model. Biophys J 1993, 64:1691-1700.
  • [126]Mayer F: Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J Mol Microbiol Biotechnol 2006, 11:228-243.
  • [127]Naranda T, Kucan Z: Effect of spermine on the efficiency and fidelity of the codon-specific binding of tRNA to the ribosomes. Eur J Biochem 1989, 182:291-297.
  • [128]Rabinowitz J, Hampai A: Quantitative polyphosphate-induced “prebiotic” peptide formation in H2O by addition of certain azoles and ions.J Mol Evol 1984–1985, 21:199–201.
  • [129]Yamanaka J, Inomata K, Yamagata Y: Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions. Orig Life Evol Biosph 1988, 18:165-178.
  • [130]Yamagata Y, Inomata K: Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution. II: catalytic effect of magnesium ion. Orig Life Evol Biosph 1997, 27:339-344.
  • [131]Yamagata Y, Inoue H, Inomata K: Specific effect of magnesium ion on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig Life Evol Biosph 1995, 25:47-52.
  • [132]Milner-White EJ, Russell MJ: Sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig Life Evol Biosph 2005, 35:19-27.
  • [133]Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White EJ: A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate. Proteins 2012, 80:1418-1424.
  • [134]Milner-White EJ, Russell MJ: Polyphosphate-peptide synergy and the organic takeover at the emergence of life. J Cosmol 2010, 10:3217-3229.
  • [135]Nakayama S, Kretsinger RH: Evolution of the EF-hand family of proteins. Annu Rev Biophys Biomol Struct 1994, 23:473-507.
  • [136]Miller SL, Urey HC: Origin of life. Science 1959, 130:1622-1624.
  • [137]Stano P, Luisi PL: Semi-synthetic minimal cells: origin and recent developments. Curr Opin Biotechnol 2013, 24(4):633-638. doi:10.1016/j.copbio.2013.01.002
  • [138]Zimnitskii AN, Bashkatov SA, Chemeris AV, Yamidanov RS, Urazbaev VN: Polysaccharides as initiators of nucleic acid polymerization. Am J Mol Biol 2014, 4:20-25.
  • [139]Zimnitskii AN, Bashkatov SA, Urazbaev VN, Chemeris AV, Yamidanov RS: The role of polysaccharides in the molecular evolution of biopolymers. Nat Sci 2014, 6:59-70.
  • [140]Garcia-Faroldi G, Rodriguez CE, Urdiales JL, Perez-Pomares JM, Davila JC, Pejler G, Sanchez-Jimenez F, Fajardo I: Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS ONE 2010, 5:e15071.
  • [141]Sobetzko P, Travers A, Muskhelishvili G: Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci U S A 2012, 109:E42-50.
  • [142]Onoda T, Oshima A, Fukunaga N, Nakatani A: Effect of Ca2+ and K+ on the intracellular pH of an Escherichia coli L-form. J Gen Microbiol 1992, 138:1265-1270.
  文献评价指标  
  下载次数:6次 浏览次数:22次