期刊论文详细信息
Biotechnology for Biofuels
Dynamic metabolic modeling of a microaerobic yeast co-culture: predicting and optimizing ethanol production from glucose/xylose mixtures
Timothy J Hanly1  Michael A Henson1 
[1] Department of Chemical Engineering, University of Massachusetts, Goessmann Lab 159, 686 N. Pleasant St, Amherst, MA 01003-3110, USA
关键词: Scheffersomyces stipitis;    Saccharomyces cerevisiae;    Mathematical modeling;    Fermentation;    Cellulosic ethanol;    Co-culture;   
Others  :  798110
DOI  :  10.1186/1754-6834-6-44
 received in 2012-10-26, accepted in 2013-03-12,  发布年份 2013
PDF
【 摘 要 】

Background

A key step in any process that converts lignocellulose to biofuels is the efficient fermentation of both hexose and pentose sugars. The co-culture of respiratory-deficient Saccharomyces cerevisiae and wild-type Scheffersomyces stipitis has been identified as a promising system for microaerobic ethanol production because S. cerevisiae only consumes glucose while S. stipitis efficiently converts xylose to ethanol.

Results

To better predict how these two yeasts behave in batch co-culture and to optimize system performance, a dynamic flux balance model describing co-culture metabolism was developed from genome-scale metabolic reconstructions of the individual organisms. First a dynamic model was developed for each organism by estimating substrate uptake kinetic parameters from batch pure culture data and evaluating model extensibility to different microaerobic growth conditions. The co-culture model was constructed by combining the two individual models assuming a cellular objective of total growth rate maximization. To obtain accurate predictions of batch co-culture data collected at different microaerobic conditions, the S. cerevisiae maximum glucose uptake rate was reduced from its pure culture value to account for more efficient S. stipitis glucose uptake in co-culture. The dynamic co-culture model was used to predict the inoculum concentration and aeration level that maximized batch ethanol productivity. The model predictions were validated with batch co-culture experiments performed at the optimal conditions. Furthermore, the dynamic model was used to predict how engineered improvements to the S. stipitis xylose transport system could improve co-culture ethanol production.

Conclusions

These results demonstrate the utility of the dynamic co-culture metabolic model for guiding process and metabolic engineering efforts aimed at increasing microaerobic ethanol production from glucose/xylose mixtures.

【 授权许可】

   
2013 Hanly and Henson; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706101348439.pdf 1143KB PDF download
Figure 7. 114KB Image download
Figure 6. 82KB Image download
Figure 5. 61KB Image download
Figure 4. 179KB Image download
Figure 3. 133KB Image download
Figure 2. 152KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577.
  • [2]Wyman CE: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 2007, 25:153-157.
  • [3]Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE: How biotech can transform biofuels. Nat Biotech 2008, 26:169-172.
  • [4]Gowen CM, Fong SS: Exploring Biodiversity for Cellulosic Biofuel Production. Chem Biodivers 2010, 7:1086-1097.
  • [5]Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R: Hemicelluloses for fuel ethanol: A review. Bioresour Technol 2010, 101:4775-4800.
  • [6]Ha S-J, Galazka JM, Rin Kim S, Choi J-H, Yang X, Seo J-H, Louise Glass N, Cate JHD, Jin Y-S: Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 2011, 108:504-509.
  • [7]Pickens LB, Tang Y, Chooi Y-H: Metabolic Engineering for the Production of Natural Products. Ann Rev Chem Biomol Eng 2011, 2:211-236.
  • [8]Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF: Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 2011, 6:286-299.
  • [9]Brenner K, You L, Arnold FH: Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 2008, 26:483-489.
  • [10]Wei H, Xu Q, Taylor Ii LE, Baker JO, Tucker MP, Ding S-Y: Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 2009, 20:330-338.
  • [11]Alper H, Stephanopoulos G: Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Micro 2009, 7:715-723.
  • [12]Eiteman MA, Lee SA, Altman R, Altman E: A substrate-selective co-fermentation strategy with Escherichia coli produces lactate by simultaneously consuming xylose and glucose. Biotechnol Bioeng 2009, 102:822-827.
  • [13]Fazzini RAB, Preto MJ, Quintas ACP, Bielecka A, Timmis KN, dos Santos VAPM: Consortia modulation of the stress response: proteomic analysis of single strain versus mixed culture. Environ Microbiol 2010, 12:2436-2449.
  • [14]Chemier JA, Fowler ZL, Koffas MAG: Trends In Microbial Synthesis of Natural Products and Biofuels. In Advances in Enzymology and Related Areas of Molecular Biology. John Wiley & Sons, Inc; 2009:151-217.
  • [15]Sonnleitner B, Käppeli O: Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis. Biotechnol Bioeng 1986, 28:927-937.
  • [16]Matsushika A, Inoue H, Kodaki T, Sawayama S: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84:37-53.
  • [17]Passoth V, Zimmermann M, Klinner U: Peculiarities of the regulation of fermentation and respiration in the crabtree-negative, xylose-fermenting yeast Pichia stipitis. Appl Biochem Biotechnol 1996, 57–58:201-212.
  • [18]Silva JPA, Mussatto SI, Roberto IC, Teixeira JA: Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energy 2012, 37:259-265.
  • [19]Shi NQ, Jeffries TW: Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1998, 50:339-345.
  • [20]Balagurunathan B, Jonnalagadda S, Tan L, Srinivasan R: Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis. Microb Cell Fact 2012, 11:27.
  • [21]Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J: Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 2012, 6:24.
  • [22]Delgenes JP, Escare MC, Laplace JM, Moletta R, Navarro JM: Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems. Ind Crops Products 1998, 7:101-111.
  • [23]Taniguchi M, Tohma T, Itaya T, Fujii M: Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J Fermen Bioeng 1997, 83:364-370.
  • [24]Srilekha Yadav K, Naseeruddin S, Sai Prashanthi G, Sateesh L, Venkateswar Rao L: Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis. Bioresour Technol 2011, 102:6473-6478.
  • [25]Goldring ES, Grossman LI, Marmur J: Petite Mutation in Yeast. J Bacteriol 1971, 107:377-381.
  • [26]Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of biochemical networks in microorganisms. Nat Rev Micro 2009, 7:129-143.
  • [27]Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003, 21:162-169.
  • [28]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60:3724-3731.
  • [29]Mahadevan R, Edwards JS, Doyle Iii FJ: Dynamic Flux Balance Analysis of Diauxic Growth in Escherichia coli. Biophys J 2002, 83:1331-1340.
  • [30]Hjersted JL, Henson MA: Optimization of fed-batch Saccharomyces cerevisiae fermentation using dynamic flux balance models. Biotechnol Progr 2006, 22:1239-1248.
  • [31]Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA: Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 2007, 3:92.
  • [32]Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR: Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 2011, 5:305-316.
  • [33]Salimi F, Zhuang K, Mahadevan R: Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotech J 2010, 5:726-738.
  • [34]Zomorrodi AR, Maranas CD: OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities. PLoS Comput Biol 2012, 8:e1002363.
  • [35]Feist A: Bernhard: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008, 26:659-667.
  • [36]Weierstall T, Hollenberg CP, Boles E: Cloning and characterization of three genes (SUT1–3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 1999, 31:871-883.
  • [37]Guijarro JM, Lagunas R: Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J Bacteriol 1984, 160:874-878.
  • [38]Skoog K, Hahn-Hägerdal B: Effect of Oxygenation on Xylose Fermentation by Pichia stipitis. Appl Environ Microbiol 1990, 56:3389-3394.
  • [39]Küenzi MT, Tingle MA, Halvorson HO: Sporulation of Saccharomyces cerevisiae in the Absence of a Functional Mitochondrial Genome. J Bacteriol 1974, 117:80-88.
  • [40]Tzagoloff A, Dieckmann CL: PET genes of Saccharomyces cerevisiae. Microbiol Rev 1990, 54:211-225.
  • [41]Hanly T, Urello M, Henson M: Dynamic flux balance modeling of S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures. Appl Microbiol Biotechnol 2012, 93:2529-2541.
  • [42]Neves AA, Vieira LM, Menezes JC: Effects of preculture variability on clavulanic acid fermentation. Biotechnol Bioeng 2001, 72:628-633.
  • [43]Ligthelm ME, Prior BA, Preez JC, Brandt V: An investigation of d-xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl Microbiol Biotechnol 1988, 28:293-296.
  • [44]Soberón X: Saier Jr MH: Engineering Transport Protein Function: Theoretical and Technical Considerations Using the Sugar-Transporting Phosphotransferase System of Escherichia coli as a Model System. J Mol Microbiol Biotechnol 2006, 11:302-307.
  • [45]Kasahara T, Maeda M, Ishiguro M, Kasahara M: Identification by Comprehensive Chimeric Analysis of a Key Residue Responsible for High Affinity Glucose Transport by Yeast HXT2. J Biol Chem 2007, 282:13146-13150.
  • [46]Bertilsson M, Andersson J, Lidén G: Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst Eng 2008, 31:369-377.
  • [47]Taniguchi M, Tanaka T: Clarification of Interactions among Microorganisms and Development of Co-culture System for Production of Useful Substances. 2004.
  • [48]Postma E, Kuiper A, Tomasouw WF, Scheffers WA, van Dijken JP: Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Appl Environ Microbiol 1989, 55:3214-3220.
  • [49]Laplace JM, Delgenes JP, Moletta R, Navarro JM: Effects of culture conditions on the co-fermentation of a glucose and xylose mixture to ethanol by a mutant of Saccharomyces diastaticus associated with Pichia stipitis. Appl Microbiol Biotechnol 1993, 39:760-763.
  • [50]Albers E, Larsson C, Andlid T, Walsh MC, Gustafsson L: Effect of Nutrient Starvation on the Cellular Composition and Metabolic Capacity of Saccharomyces cerevisiae. Appl Environ Microbiol 2007, 73:4839-4848.
  • [51]Heerde E, Radler F: Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae. Arch Microbiol 1978, 117:269-276.
  • [52]Rieger M, Kappeli O, Fiechter A: The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J Gen Microbiol 1983, 129:653-661.
  • [53]Laplace JM, Delgenes JP, Moletta R, Navarro JM: Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae; and Zymomonas mobilis: oxygen requirement as a key factor. Appl Microbiol Biotechnol 1991, 36:158-162.
  • [54]Lamping SR, Zhang H, Allen B: Ayazi Shamlou P: Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 2003, 58:747-758.
  • [55]Mo M, Palsson B, Herrgard M: Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 2009, 3:37.
  • [56]Hanly TJ, Henson MA: Dynamic flux balance modeling of microbial co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol Bioeng 2011, 108:376-385.
  • [57]Hjersted JL, Henson MA, Mahadevan R: Genome-scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed-batch culture. Biotechnol Bioeng 2007, 97:1190-1204.
  文献评价指标  
  下载次数:38次 浏览次数:19次