期刊论文详细信息
BMC Genomics
A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling
Bruno Blondin1  Jean-Luc Legras1  Frédéric Bigey1  Isabelle Sanchez1  Claire Brice1 
[1] Université Montpellier 1, UMR1083 Science pour l’Œnologie, 2 Place Viala, F-34060 Montpellier, France
关键词: BIO3;    ARG81;    GCN1;    MDS3;    TOR pathway;    Saccharomyces cerevisiae;    QTL mapping;    Nitrogen;    Fermentation;   
Others  :  857093
DOI  :  10.1186/1471-2164-15-495
 received in 2014-01-31, accepted in 2014-06-10,  发布年份 2014
PDF
【 摘 要 】

Background

In conditions of nitrogen limitation, Saccharomyces cerevisiae strains differ in their fermentation capacities, due to differences in their nitrogen requirements. The mechanisms ensuring the maintenance of glycolytic flux in these conditions are unknown. We investigated the genetic basis of these differences, by studying quantitative trait loci (QTL) in a population of 133 individuals from the F2 segregant population generated from a cross between two strains with different nitrogen requirements for efficient fermentation.

Results

By comparing two bulks of segregants with low and high nitrogen requirements, we detected four regions making a quantitative contribution to these traits. We identified four polymorphic genes, in three of these four regions, for which involvement in the phenotype was validated by hemizygote comparison. The functions of the four validated genes, GCN1, MDS3, ARG81 and BIO3, relate to key roles in nitrogen metabolism and signaling, helping to maintain fermentation performance.

Conclusions

This study reveals that differences in nitrogen requirement between yeast strains results from a complex allelic combination. The identification of three genes involved in sensing and signaling nitrogen and specially one from the TOR pathway as affecting nitrogen requirements suggests a role for this pathway in regulating the fermentation rate in starvation through unknown mechanisms linking nitrogen signaling to glycolytic flux.

【 授权许可】

   
2014 Brice et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140723065040444.pdf 2558KB PDF download
56KB Image download
35KB Image download
45KB Image download
28KB Image download
64KB Image download
121KB Image download
28KB Image download
34KB Image download
【 图 表 】

【 参考文献 】
  • [1]Blateyron L, Sablayrolles JM: Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate. J Biosci Bioeng 2001, 91:184-189.
  • [2]Bauer FF, Pretorius IS: Yeast stress response and fermentation efficiency: how to survive the making of wine – a review. S Afr J Enol Vitic 2000, 21:2751.
  • [3]Bely M, Sablayrolles JM, Barre P: Description of alcoholic fermentation kinetics: its variability and significance. Am J Enol Vitic 1990, 159:25-32.
  • [4]Gutiérrez A, Chiva R, Sancho M, Beltran G, Arroyo-López FN, Guillamon JM: Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must. Food Microbiol 2012, 31(1):25-32.
  • [5]Brice C, Sanchez I, Tesnière C, Blondin B: Assessing the mechanisms responsible for differences in nitrogen requirements between Saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl Environ Microbioldoi:10.1128/AEM.03856-13
  • [6]Salmon JM: Effect of sugar transport inactivation in Saccharomyces cerevisiae on sluggish and stuck enological fermentations. Appl Environ Microbiol 1989, 55(4):953-958.
  • [7]Ansanay-Galeote V, Blondin B, Dequin S, Sablayrolles JM: Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett 2001, 23(9):677-681.
  • [8]Rossignol T: Analyse de l'expression du génome des levures oenologiques en fermentation alcoolique par des approches post-génomiques. PhD thesis. 2004. Montpellier II University, Sciences des Procédés, Sciences des Aliments
  • [9]Mendes-Ferreira A, del Olmo M, Garcia-Matinez J, Jimenez-Marti E, Mendes-Faia A, Perez-Ortin JE, Leao C: Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation. Appl Environ Microbiol 2007, 73:3049-3060.
  • [10]Mendes-Ferreira A, del Olmo M, Garcia-Matinez J, Jimenez-Marti E, Leao C, Mendes-Faia A, Perez-Ortin JE: Saccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation. Appl Environ Microbiol 2007, 73:5363-5369.
  • [11]Contreras A, García V, Salinas F, Urzúa U, Ganga MA, Martínez C: Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2012, 28(3):1107-1113.
  • [12]Gutiérrez A, Beltran G, Warringer J, Guillamon JM: Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS ONE 2013, 8(6):e67166. doi:10.1371/journal.pone.0067166
  • [13]Watanabe D, Araki Y, Zhou Y, Maeya N, Akao T, Shimoi H: A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Appl Environ Microbiol 2012, 78(11):4008-4016.
  • [14]Pedruzzi I, Dubouloz F, Cameroni E, Wanke V, Roosen J, Winderickx J, De Virgilio C: TOR and PKA signaling pathways converge on the protein kinase Rim15 to control entry into G0. Mol Cell 2003, 12(6):1607-1613.
  • [15]Swinnen E, Wanke V, Roosen J, Smets B, Dubouloz F, Pedruzzi I, Cameroni E, De Virgilio C, Winderickx J: Rim15 and the crossroads of nutrient signalling pathways in Saccharomyces cerevisiae. Cell Division 2006, 1(1):3. BioMed Central Full Text
  • [16]Geldermann H: Investigations on inheritance of quantitative characters in animals by gene markers II expected effects. Theor Appl Genet 1976, 47(1):1-4.
  • [17]Sinha H, Nicholson BP, Steinmetz LM, McCusker JH: Complex genetic interactions in a quantitative trait locus. PLoS Genet 2006, 2(2):e13.
  • [18]Sinha H, David L, Pascon RC, Clauder-Münster S, Krishnakumar S, Nguyen M, Shi G, Dean J, Davis RW, Oefner TJ, McCusker JH, Steinmetz LM: Sequential elimination of major-effect contributors identifies additional quantitative trait loci conditioning high-temperature growth in yeast. Genetics 2008, 180(3):1661-1670.
  • [19]Ben-Ari G, Zenvirth D, Sherman A, David L, Klutstein M, Lavi U, Hillel J, Simchen G: Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet 2006, 2(11):e195.
  • [20]Deutschbauer AM, Davis RW: Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat Genet 2005, 37(12):1333-1340.
  • [21]Gerke JP, Chen CTL, Cohen BA: Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. Genetics 2006, 174(2):985-997.
  • [22]Katou T, Namise M, Kitagaki H, Akao T, Shimoi H: QTL mapping of sake brewing characteristics of yeast. J Biosci Bioeng 2009, 107(4):383-393.
  • [23]Nogami S, Ohya Y, Yvert G: Genetic complexity and quantitative trait loci mapping of yeast morphological traits. PLoS Genet 2007, 3(2):e31.
  • [24]Kim HS, Fay JC: Genetic variation in the cysteine biosynthesis pathway causes sensitivity to pharmacological compounds. PNAS 2007, 104(49):19387-19391.
  • [25]Hu XH, Wang MH, Tan T, Li JR, Yang H, Leach L, Zhang RM, Luo ZW: Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 2007, 175(3):1479-1487.
  • [26]Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D: Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 2004, 4(7):711-719.
  • [27]Smith EN, Kruglyak L: Gene environment interaction in yeast gene expression. PLoS Biol 2008, 6(4):e83.
  • [28]Brauer MJ, Christianson CM, Pai DA, Dunham MJ: Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 2006, 173(3):1813-1816.
  • [29]Steyer D, Ambroset C, Brion C, Claudel P, Delobel P, Sanchez I, Erny C, Blondin B, Karst F, Legras JL: QTL mapping of the production of wine aroma compounds by yeast. BMC Genomics 2012, 13(1):573. BioMed Central Full Text
  • [30]Jara M, Cubillos FA, García V, Salinas F, Aguilera O, Liti G, Martínez C: Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PLoS ONE 2014, 9:e86533.
  • [31]Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guerin C, Chiapello H, Nicolas P, Bigey F, Dequin S, Blondin B: Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 2011, 1(4):263-281.
  • [32]Brion C, Ambroset C, Sanchez I, Legras JL, Blondin B: Variations in regulatory networks in yeast revealed in multi-stressed conditions of wine fermentation. BMC Genomics 2013, 14:681. BioMed Central Full Text
  • [33]Brem RB, Clinton GYR, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. Science 2002, 296(5568):752-755.
  • [34]Flint J, Valdar W, Shifman S, Mott R: Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 2005, 6(4):271-286.
  • [35]Keurentjes JJB, Bentsink L, Alonso-Blanco C, Hanhart CJ, Blankestijn-De Vries H, Effgen S, Vreugdenhil D, Koornneef M: Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 2007, 175(2):891-905.
  • [36]Wang X, Le Roy I, Nicodeme E, Li R, Wagner R, Petros C, Churchill GA, Harris S, Darvasi A, Kirilovsky J, Roubertoux PL, Paigen B: Using advanced intercross lines for high-resolution mapping of HDL cholesterol quantitative trait loci. Genome Res 2003, 13(7):1654-1664.
  • [37]Lorenz K, Cohen BA: Small- and large-effect quantitative trait locus interactions underlie variation in yeast sporulation efficiency. Genetics 2012, 192(3):1123-1132.
  • [38]Satagopan JM, Sen S, Churchill GA: Sequential quantitative trait locus mapping in experimental crosses. Stat Appl Genet Mol Biol 2007, 6:Article12.
  • [39]Fisher RA: The genetical theory of natural selection. Oxford University: The Clarendon Press; 1930.
  • [40]Lango AH, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, Willer CJ, Jackson AU, Vedantam S, Raychaudhuri S, Ferreira T, Wood AR, Weyant RJ, Segrè AV, Speliotes EK, Wheeler E, Soranzo N, Park JH, Yang J, Gudbjartsson D, Heard-Costa NL, Randall JC, Qi L, Vernon Smith A, Mägi R, Pastinen T, Liang L, Heid IM, Luan J, Thorleifsson G, et al.: Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 2010, 467(7317):832-838.
  • [41]Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, Cunningham MJ, de Andrade M, Feenstra B, Feingold E, Hayes MG, Hill WG, Landi MT, Alonso A, Lettre G, Lin P, Ling H, Lowe W, Mathias RA, Melbye M, Pugh E, Cornelis MC, Weir BS, Goddard ME, Visscher PM: Genome partitioning of genetic variation for complex traits using common SNPs. Nat Genet 2011, 43(6):519-525.
  • [42]Lynch M, Walsh B: Genetics and analysis of quantitative traits. Volume 5. Volume 72. 1st edition. Sunderland, MA01375 USA: Sinauer Associates Inc; 1998::124.
  • [43]Manginot C, Roustan JL, Sablayrolles JM: Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of the stationary phase. Enzyme Microb Technol 1998, 23(7–8):511-517.
  • [44]Crépin L, Nidelet T, Shanchez I, Dequin S, Camarasa C: Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Appl Environ Microbiol 2012, 78(22):8102-8111.
  • [45]Hinnebusch AG: Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 2005, 59:407-450.
  • [46]Ng PC, Henikoff S: SIFT Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003, 31:3812-3814.
  • [47]Daqui T, Li W, Ye Y, Brunger AT: Structure and Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p. PNAS 2007, 104(40):15599-15606.
  • [48]Benni ML, Neigeborn L: Identification of a new class of negative regulators affecting sporulation-specific gene expression in yeast. Genetics 1997, 147(3):1351-1366.
  • [49]Fendt SM, Oliveira AP, Christen S, Picotti P, Dechant RC, Sauer U: Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast. Mol Syst Biol 2010, 6:432.
  • [50]Thevelein JM: Signal transduction in yeast. Yeast 1994, 10:1753-1790.
  • [51]Donaton MC, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM: The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 2003, 50(3):911-929.
  • [52]Grundmann O, Mösch HU, Braus GH: Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 2001, 276(28):25661-25671.
  • [53]Qui HF, Dubois E, Messenguy F: Dissection of the bifunctional ARGRII protein involved in the regulation of arginine anabolic and catabolic pathways. Mol Cell Biol 1991, 11(4):2169-2179.
  • [54]Messenguy F, Dubois E: Regulation of arginine metabolism in Saccharomyces cerevisiae: a network of specific and pleiotropic proteins in response to multiple environmental signals. Food Technol Biotechnol 2000, 38(4):277-285.
  • [55]Phalip V, Kuhn I, Lemoine Y, Jeltsch JM: Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 1999, 232(1):43-51.
  • [56]McDonald CM, Wagner M, Dunham MJ, Shin ME, Ahmed NT, Winter E: The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 2009, 181(2):511-523.
  • [57]Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH: A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 1996, 24(13):2519-2524.
  • [58]Bely M, Sablayrolles JM, Barre P: Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 1990, 70:246-252.
  • [59]Sablayrolles JM, Barre P, Grenier P: Design of laboratory automatic system for studying alcoholic fermentations in an isothermal oenological conditions. Biotechnol Tech 1987, 1:181-184.
  • [60]Bezenger MC, Navarro JM: Influence de l’azote sur la fermentation alcoolique en milieu modèle simulant les conditions de l’oenologie. Sci Alim 1897, 7:41-60.
  • [61]Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW: Dissecting the architecture of a quantitative trait locus in yeast. Nature 2002, 416:326-330.
  • [62]Gresham D, Curry B, Ward A, Gordon DB, Brizuela L, Kruglyak L, Botstein D: Optimized detection of sequence variation in heterozygous genomes using DNA microarrays with isothermal-melting probes. PNAS 2010, 107(4):1482-1487.
  • [63]Rozen S, Skaletsky HE: Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols: Methods in Molecular Biology. Totowa, NJ: Humana Press; 2000:365-386.
  • [64]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing 2012.
  • [65]Brem RB, Kruglyak L: The landscape of genetic complexity across 5,700 gene expression traits in yeast. PNAS 2005, 102(5):1572-1577.
  • [66]Marullo P, Bely M, Masneuf-Pomarède I, Pons M, Aigle M, Dubourdieu D: Breeding strategies for combining fermentative qualities and reducing off-flavor production in a wine yeast model. FEMS Yeast Res 2006, 6(2):268-79.
  • [67]Smyth GK, Speed T: Normalization of cDNA microarray data. Method 2003, 31:265-273.
  • [68]Benjamini Y, Hochberg Y: Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001, 125:289-300.
  • [69]Bergström A, Simpson TJ, Salinas F, Parts L, Barré P, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G: A high-definition view functional genetic variation from natural yeast genomes. Mol Biol Evoldoi:10.1093/molbev/msu037
  • [70]Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ: Population genomics of domestic and wild yeasts. Nature 2009, 458(7236):337-341.
  • [71]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731-2739.
  • [72]Kimura M: A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980, 16:111-120.
  文献评价指标  
  下载次数:27次 浏览次数:23次