期刊论文详细信息
Biology Direct
Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins
Daria N. Shalaeva1  Michael Y. Galperin2  Armen Y. Mulkidjanian3 
[1] School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia
[2] National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda 20894, MD, USA
[3] A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
关键词: Chemoreceptor;    Signal transduction;    Evolution;    GPCR;    Opioid receptor;    Proteorhodopsin;    Sensory rhodopsin;    Halorhodopsin;    Bacteriorhodopsin;    Vision;   
Others  :  1230609
DOI  :  10.1186/s13062-015-0091-4
 received in 2015-07-07, accepted in 2015-10-12,  发布年份 2015
PDF
【 摘 要 】

Microbial rhodopsins and G-protein coupled receptors (GPCRs, which include animal rhodopsins) are two distinct (super) families of heptahelical (7TM) membrane proteins that share obvious structural similarities but no significant sequence similarity. Comparison of the recently solved high-resolution structures of the sodium-translocating bacterial rhodopsin and various Na + -binding GPCRs revealed striking similarity of their sodium-binding sites. This similarity allowed us to construct a structure-guided sequence alignment for the two (super)families, which highlighted their evolutionary relatedness. Our analysis supports a common underlying molecular mechanism for both families that involves a highly conserved aromatic residue playing a pivotal role in rotation of the 6th transmembrane helix.

【 授权许可】

   
2015 Shalaeva et al.

【 预 览 】
附件列表
Files Size Format View
20151107013258633.pdf 2330KB PDF download
Fig. 2. 87KB Image download
Fig. 1. 174KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Ovchinnikov YA: Rhodopsin and bacteriorhodopsin: structure-function relationships. FEBS Lett 1982, 148(2):179-91.
  • [2]Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H: Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 2014, 114(1):126-63.
  • [3]Isom DG, Dohlman HG: Buried ionizable networks are an ancient hallmark of G protein-coupled receptor activation. Proc Natl Acad Sci U S A 2015, 112(18):5702-7.
  • [4]Katritch V, Cherezov V, Stevens RC: Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 2013, 53:531-56.
  • [5]Manglik A, Kim TH, Masureel M, Altenbach C, Yang Z, Hilger D, et al.: Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 2015, 161(5):1101-11.
  • [6]Spudich JL, Yang CS, Jung KH, Spudich EN: Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 2000, 16:365-92.
  • [7]Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al.: Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289(5480):739-45.
  • [8]Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, et al.: Crystal structure of opsin in its G-protein-interacting conformation. Nature 2008, 455(7212):497-502.
  • [9]Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP: Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 2008, 454(7201):183-7.
  • [10]de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I: The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol 2014, 6(3):606-19.
  • [11]Lefkowitz RJ, Kobilka BK, Caron MG: The new biology of drug receptors. Biochem Pharmacol 1989, 38(18):2941-8.
  • [12]Rosenbaum DM, Rasmussen SG, Kobilka BK: The structure and function of G-protein-coupled receptors. Nature 2009, 459(7245):356-63.
  • [13]Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 2003, 63(6):1256-72.
  • [14]Oesterhelt D, Stoeckenius W: Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 1971, 233(39):149-52.
  • [15]Zhai Y, Heijne WH, Smith DW, Saier MH Jr: Homologues of archaeal rhodopsins in plants, animals and fungi: structural and functional predications for a putative fungal chaperone protein. Biochim Biophys Acta 2001, 1511(2):206-23.
  • [16]Brown LS: Eubacterial rhodopsins - unique photosensors and diverse ion pumps. Biochim Biophys Acta 2014, 1837(5):553-61.
  • [17]Inoue K, Tsukamoto T, Sudo Y: Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim Biophys Acta 2014, 1837(5):562-77.
  • [18]Anantharaman V, Aravind L: Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics 2003, 4(1):34.
  • [19]Anantharaman V, Abhiman S, de Souza RF, Aravind L: Comparative genomics uncovers novel structural and functional features of the heterotrimeric GTPase signaling system. Gene 2011, 475(2):63-78.
  • [20]Kouyama T, Murakami M: Structural divergence and functional versatility of the rhodopsin superfamily. Photochem Photobiol Sci 2010, 9(11):1458-65.
  • [21]Subramaniam S, Gerstein M, Oesterhelt D, Henderson R: Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 1993, 12(1):1-8.
  • [22]Yee DC, Shlykov MA, Vastermark A, Reddy VS, Arora S, Sun EI, et al.: The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 2013, 280(22):5780-800.
  • [23]Soppa J: Two hypotheses--one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors. FEBS Lett 1994, 342(1):7-11.
  • [24]Devine EL, Oprian DD, Theobald DL: Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins. Proc Natl Acad Sci U S A 2013, 110(33):13351-5.
  • [25]Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, et al.: High-resolution crystal structure of human protease-activated receptor 1. Nature 2012, 492(7429):387-92.
  • [26]Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, et al.: Molecular control of delta-opioid receptor signalling. Nature 2014, 506(7487):191-6.
  • [27]Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC: Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 2014, 39(5):233-44.
  • [28]Miller-Gallacher JL, Nehme R, Warne T, Edwards PC, Schertler GF, Leslie AG, et al.: The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na + ion that stabilises the ligand-free receptor. PLoS One 2014, 9(3):e92727.
  • [29]Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK: Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 1999, 291(4):899-911.
  • [30]Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, et al.: Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 2008, 105(43):16561-5.
  • [31]Nakanishi T, Kanada S, Murakami M, Ihara K, Kouyama T: Large deformation of helix F during the photoreaction cycle of Pharaonis halorhodopsin in complex with azide. Biophys J 2013, 104(2):377-85.
  • [32]Nordström KJ, Sallman Almen M, Edstam MM, Fredriksson R, Schioth HB: Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol 2011, 28(9):2471-80.
  • [33]Krishnan A, Almen MS, Fredriksson R, Schioth HB: The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 2012., 7(1) Article ID e29817
  • [34]Taddese B, Upton GJ, Bailey GR, Jordan SR, Abdulla NY, Reeves PJ, et al.: Do plants contain g protein-coupled receptors? Plant Physiol 2014, 164(1):287-307.
  • [35]Wu HX, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, et al.: Structure of a class C GPCR metabotropic glutamate Receptor 1 bound to an allosteric modulator. Science 2014, 344(6179):58-64.
  • [36]Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, et al.: Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 2014, 511(7511):557-62.
  • [37]Fan Y: Spectroscopic studies of novel microbial rhodopsins from fungi and bacteria. University of Guelf, Guelf; 2011.
  • [38]Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, et al.: A light-driven sodium ion pump in marine bacteria. Nat Commun 2013, 4:1678.
  • [39]Inoue K, Kato Y, Kandori H: Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 2015, 23(2):91-8.
  • [40]Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, et al.: Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol 2015, 22(5):390-5.
  • [41]Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, et al.: Structural basis for Na + transport mechanism by a light-driven Na + pump. Nature 2015, 521(7550):48-53.
  • [42]Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, et al.: Structural basis for allosteric regulation of GPCRs by sodium ions. Science 2012, 337(6091):232-6.
  • [43]Mulkidjanian AY, Makarova KS, Galperin MY, Koonin EV: Inventing the dynamo machine: the evolution of the F-type and V-type ATPases. Nat Rev Microbiol 2007, 5(11):892-9.
  • [44]Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV: Evolutionary primacy of sodium bioenergetics. Biol Direct 2008, 3:13.
  • [45]Mulkidjanian AY, Dibrov P, Galperin MY: The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 2008, 1777(7–8):985-92.
  • [46]Mulkidjanian AY, Galperin MY, Koonin EV: Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009, 34(4):206-15.
  • [47]Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV: Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci U S A 2012, 109(14):E821-30.
  • [48]Dibrova DV, Galperin MY, Koonin EV, Mulkidjanian AY: Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochem Mosc 2015, 80(5):495-516.
  • [49]Dibrova DV, Galperin MY, Mulkidjanian AY: Characterization of the N-ATPase, a distinct, laterally transferred Na + -translocating form of the bacterial F-type membrane ATPase. Bioinformatics 2010, 26(12):1473-6.
  • [50]Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, et al.: Halotolerant cyanobacterium Aphanothece halophytica contains an Na + -dependent F 1 F 0 -ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 2011, 286(12):10169-76.
  • [51]Balashov SP, Imasheva ES, Dioumaev AK, Wang JM, Jung KH, Lanyi JK: Light-driven Na + pump from Gillisia limnaea: a high-affinity Na + binding site is formed transiently in the photocycle. Biochemistry 2014, 53(48):7549-61.
  • [52]Schrodinger LLC: The PyMOL Molecular Graphics System, Version 1.3r1. 2010.
  • [53]Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 2004, 60(Pt 12 Pt 1):2256-68.
  • [54]Rose PW, Bi CX, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, et al.: The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res 2013, 41(D1):D475-82.
  • [55]Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, et al.: Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 2010, 26(23):2983-5.
  • [56]Ballestros JA, Weinstein H: Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 1995, 25:366-428.
  • [57]Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH, et al.: Generic GPCR residue numbers - aligning topology maps while minding the gaps. Trends Pharmacol Sci 2015, 36(1):22-31.
  • [58]Pogoryelov D, Yildiz O, Faraldo-Gomez JD, Meier T: High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 2009, 16(10):1068-73.
  • [59]da Silva GF, Goblirsch BR, Tsai AL, Spudich JL: Cation-specific conformations in a dual-function ion-pumping microbial rhodopsin. Biochemistry 2015, 54(25):3950-9.
  • [60]Patzelt H, Simon B, TerLaak A, Kessler B, Kuhne R, Schmieder P, et al.: The structures of the active center in dark-adapted bacteriorhodopsin by solution-state NMR spectroscopy. Proc Natl Acad Sci U S A 2002, 99(15):9765-70.
  • [61]Vonck J: A three-dimensional difference map of the N intermediate in the bacteriorhodopsin photocycle: part of the F helix tilts in the M to N transition. Biochemistry 1996, 35(18):5870-8.
  • [62]Heberle J, Fitter J, Sass HJ, Buldt G: Bacteriorhodopsin: the functional details of a molecular machine are being resolved. Biophys Chem 2000, 85(2–3):229-48.
  • [63]Klare JP, Bordignon E, Engelhard M, Steinhoff HJ: Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 2004, 3(6):543-7.
  • [64]Radzwill N, Gerwert K, Steinhoff HJ: Time-resolved detection of transient movement of helices F and G in doubly spin-labeled bacteriorhodopsin. Biophys J 2001, 80(6):2856-66.
  • [65]Kaulen AD: Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle. Biochim Biophys Acta 2000, 1460(1):204-19.
  • [66]Hilf RJ, Dutzler R: Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel. Nature 2009, 457(7225):115-8.
  • [67]Sattig T, Rickert C, Bamberg E, Steinhoff HJ, Bamann C: Light-induced movement of the transmembrane helix B in channelrhodopsin-2. Angew Chem Int Ed Engl 2013, 52(37):9705-8.
  • [68]Krause N, Engelhard C, Heberle J, Schlesinger R, Bittl R: Structural differences between the closed and open states of channelrhodopsin-2 as observed by EPR spectroscopy. FEBS Lett 2013, 587(20):3309-13.
  • [69]Boeuf D, Audic S, Brillet-Gueguen L, Caron C, Jeanthon C: MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database (Oxford) 2015, 2015:bav080.
  • [70]Yutin N, Koonin EV: Proteorhodopsin genes in giant viruses. Biol Direct 2012, 7:34.
  • [71]Philosof A, Beja O: Bacterial, archaeal and viral-like rhodopsins from the Red Sea. Environ Microbiol Rep 2013, 5(3):475-82.
  • [72]Burykin A, Kato M, Warshel A: Exploring the origin of the ion selectivity of the KcsA potassium channel. Proteins 2003, 52(3):412-26.
  • [73]Oesterhelt D, Tittor J, Bamberg E: A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr 1992, 24(2):181-91.
  • [74]Blanck A, Oesterhelt D, Ferrando E, Schegk ES, Lottspeich F: Primary structure of sensory rhodopsin I, a prokaryotic photoreceptor. EMBO J 1989, 8(13):3963-71.
  • [75]Skulachev VP: Interrelations of bioenergetic and sensory functions of the retinal proteins. Q Rev Biophys 1993, 26(2):177-99.
  • [76]Spudich JL, Sineshchekov OA, Govorunova EG: Mechanism divergence in microbial rhodopsins. Biochim Biophys Acta 2014, 1837(5):546-52.
  • [77]Beja O, Lanyi JK: Nature’s toolkit for microbial rhodopsin ion pumps. Proc Natl Acad Sci U S A 2014, 111(18):6538-9.
  • [78]Nagel G, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E: Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 2005, 33(Pt 4):863-6.
  • [79]Skulachev VP: Membrane Bioenergetics. Springer Verlag, Heidelberg; 1989.
  • [80]Brown LS: Fungal rhodopsins and opsin-related proteins: eukaryotic homologues of bacteriorhodopsin with unknown functions. Photochem Photobiol Sci 2004, 3(6):555-65.
  • [81]McCarren J, DeLong EF: Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ Microbiol 2007, 9(4):846-58.
  • [82]Shang Y, LeRouzic V, Schneider S, Bisignano P, Pasternak GW, Filizola M: Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions. Biochemistry 2014, 53(31):5140-9.
  • [83]Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, Hooley RA, et al.: Transcriptome analysis of Arabidopsis GCR1 mutant reveals its roles in stress, hormones, secondary metabolism and phosphate starvation. PLoS One 2015., 10(2) Article ID e0117819
  • [84]Davies MN, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR: On the hierarchical classification of G protein-coupled receptors. Bioinformatics 2007, 23(23):3113-8.
  • [85]Lampert TJ, Coleman KD, Hennessey TM: A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction. PLoS One 2011., 6(11) Article ID e28022
  • [86]Jekely G: Evolution of phototaxis. Philos Trans R Soc Lond B Biol Sci 2009, 364(1531):2795-808.
  • [87]Bhasin M, Raghava GP: GPCRsclass: a web tool for the classification of amine type of G-protein-coupled receptors. Nucleic Acids Res 2005, 33(Web Server issue):W143-7.
  • [88]Naveed M, Khan AU: GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble. Amino Acids 2012, 42(5):1809-23.
  • [89]Peng ZL, Yang JY, Chen X. An improved classification of G-protein-coupled receptors using sequence-derived features. BMC Bioinformatics. 2010;11:420.
  • [90]Lu G, Wang Z, Jones AM, Moriyama EN: 7TMRmine: a Web server for hierarchical mining of 7TMR proteins. BMC Genomics 2009, 10:275.
  • [91]Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ: Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25(9):1189-91.
  • [92]Taylor WR: The classification of amino acid conservation. J Theor Biol 1986, 119(2):205-18.
  • [93]Gushchin I, Reshetnyak A, Borshchevskiy V, Ishchenko A, Round E, Grudinin S, et al.: Active state of sensory rhodopsin II: structural determinants for signal transfer and proton pumping. J Mol Biol 2011, 412(4):591-600.
  • [94]Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, et al.: Crystal structure of the channelrhodopsin light-gated cation channel. Nature 2012, 482(7385):369-74.
  • [95]Gmelin W, Zeth K, Efremov R, Heberle J, Tittor J, Oesterhelt D: The crystal structure of the L1 intermediate of halorhodopsin at 1.9 Å resolution. Photochem Photobiol 2007, 83(2):369-77.
  • [96]Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, et al.: Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci U S A 2013, 110(31):12631-6.
  • [97]Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, et al.: Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 2012, 485(7398):321-6.
  • [98]Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al.: High-resolution crystal structure of an engineered human β 2 -adrenergic G protein-coupled receptor. Science 2007, 318(5854):1258-65.
  • [99]Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, et al.: Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 2014, 111(6):E655-62.
  • [100]Okada T, Sugihara M, Bondar AN, Elstner M, Entel P, Buss V: The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure. J Mol Biol 2004, 342(2):571-83.
  文献评价指标  
  下载次数:45次 浏览次数:22次