期刊论文详细信息
Chemistry Central Journal
Microbial transformation of anti-cancer steroid exemestane and cytotoxicity of its metabolites against cancer cell lines
Elias Baydoun4  Marium Bibi3  Muhammad Asif Iqbal3  Atia-tul Wahab2  Dina Farran4  Colon Smith4  Samina A Sattar3  Atta-ur Rahman2  M Iqbal Choudhary1 
[1] Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21412, Saudi Arabia
[2] Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
[3] H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
[4] American University of Beirut, Beirut, 1107 2020, Lebanon
关键词: Microbial transformation;    Macrophomina phaseolina;    Fusarium lini;    PC3);    Cancer cell lines (HeLa;    Anti-cancer activity;    Exemestane;    Steroid;   
Others  :  787937
DOI  :  10.1186/1752-153X-7-57
 received in 2013-01-22, accepted in 2013-03-12,  发布年份 2013
PDF
【 摘 要 】

Background

Microbial transformation of steroids has been extensively used for the synthesis of steroidal drugs, that often yield novel analogues, not easy to obtain by chemical synthesis. We report here fungal transformation of a synthetic steroidal drug, exemestane, used for the treatment of breast cancer and function through inhibition of aromatase enzyme.

Results

Microbial transformation of anti-cancer steroid, exemestane (1), was investigated by using two filamentous fungi. Incubation of 1 with fungi Macrophomina phaseolina, and Fusarium lini afforded three new, 11α-hydroxy-6-methylene-androsta-1, 4-diene-3,17-dione (2), 16β, 17β-dihydroxy-6-methylene-androsta-1, 4-diene-3-one (3), and 17β-hydroxy-6-methylene-androsta-1, 4-diene-3, 16-dione (4), and one known metabolites, 17β-hydroxy-6-methylene-androsta-1, 4-diene-3-one (5). Their structures were deduced spectroscopically. Compared to 1 (steroidal aromatase inactivator), the transformed metabolites were also evaluated for cytotoxic activity by using a cell viability assay against cancer cell lines (HeLa and PC3). Metabolite 2 was found to be moderately active against both the cell lines.

Conclusions

Biotransformation of exemestane (1) provides an efficient method for the synthesis of new analogues of 1. The metabolites were obtained as a result of reduction of double bond and hydroxylation. The transformed product 2 exhibited a moderate activity against cancer cell lines (HeLa and PC3). These transformed products can be studied for their potential as drug candidates.

【 授权许可】

   
2013 Baydoun et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702221446627.pdf 317KB PDF download
Figure 5. 22KB Image download
Figure 4. 23KB Image download
Figure 3. 25KB Image download
Figure 2. 24KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Choudhary MI, Zafar S, Khan NT, Ahmad S, Noreen S, Marasini BP, Al-Khedhairy AA: Atta-ur-Rahman: Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enzyme Inhib Med Chem 2012, 27:348-355.
  • [2]Choudhary MI, Erum S, Atif M, Malik R, Khan NT, Atta-ur-Rahman : Biotransformation of (20S)-20-hydroxymethylpregna-1,4-dien-3-one by four filamentous fungi. Steroids 2011, 76:1288-1296.
  • [3]Choudhary MI, Shah SAA, Atta-ur-Rahman , Khan SN, Khan MTH: α-Glucosidase and tyrosinase inhibitors from fungal hydroxylation of tibolone and hydroxytibolones. Steroids 2010, 75:956-966.
  • [4]Al-Aboudi A, Mohammad MY, Haddad S, Al-Far R, Choudhary MI, Atta-ur-Rahman : Biotransformation of methyl cholate by Aspergillus niger. Steroids 2009, 74:483-486.
  • [5]Choudhary MI, Mohammad MY, Musharraf SG, Parvez M, Al-Aboudi A, Atta-ur-Rahman : New oxandrolone derivatives by biotransformation using Rhizopus stolonifer. Steroids 2009, 74:1040-1044.
  • [6]Choudhary MI, Khan NT, Musharraf SG, Anjum S, Atta-ur-Rahman : Biotransformation of adrenosterone by filamentous fungus, Cunninghamella elegans. Steroids 2007, 72:923-929.
  • [7]Devkota KP, Choudhary MI, Nawaz SA, Lannang AM, Lenta BN, Fokou PA, Sewald N: Microbial transformation of the steroidal alkaloid dictyophlebine by Rhizopus stolonifer. Chem Pharm Bull 2007, 55:682-684.
  • [8]Tong WY, Dong X: Microbial biotransformation: Recent development on steroid drugs. Recent Pat Biotechnol 2009, 3(2):141-153.
  • [9]Henry NL, Azzouz F, Desta Z, Li L, Nguyen AT, Lemler S, Hayden J, Tarpinian K, Yakim E, Flockhart DA, Stearns V, Hayes DF, Storniolo AM: Predictors of aromatase inhibitor discontinuation as a result of treatment-Emergent symptoms in early-stage breast cancer. J Clin Oncol 2012, 30(9):936-942.
  • [10]Mrozek E, Layman R, Ramaswamy B, Schaaf L, Li X, Ottman S, Shapiro CL: Phase II trial of exemestane in combination with fulvestrant in postmenopausal women with advanced, Hormone-Responsive Breast Cancer. Clin Breast Cancer 2012, 12(2):151-156.
  • [11]Debled M, Le Loarer F, Callonnec F, Soubeyran I, Cambon-Michot C, Dujardin F, Italiano A: Complete response to exemestane in a patient with a desmoid tumor. Futur Oncol 2012, 8(4):483-486.
  • [12]Hille U, Soergel P, Laenger F, Schippert C, Makowski L, Hillemanns P: Aromatase inhibitors as solely treatment in postmenopausal breast cancer patients. The Breast Journal 2012, 18(2):145-150.
  • [13]Long B, Groothuis PG, Hicklin D: IGF1R Inhibitor based treatment of prostrate cancer. International application number: PCT/US2010/055608 Publication number: WO/2011/05706, Filing date: Nov 05, 2010
  • [14]Van-Gool SA, Wit JM, De-Schutter T, De-Clerck N, Postnov AA, Hovinga SK, Van-Doorn J, Veiga SJ, Garcia-Segura LM, Karperien M: Marginal growth increase, altered bone quality and polycystic ovaries in female prepubertal rats after treatment with the aromatase inhibitor exemestane. Horm Res Paediatr 2010, 73(1):49-60.
  • [15]Yamashita H, Takahashi S, Ito Y, Yamashita T, Ando Y, Toyama T, Sugiura H, Yoshimoto N, Kobayashi S, Fujii Y, Hirotaka I: Predictors of response to exemestane as primary endocrine therapy in estrogen receptor-positive breast cancer. Cancer Sci 2009, 100(11):2028-2033.
  • [16]Pariza RJ, Yarger JG: (S)-6-Methyloxaalkyl exemestane compounds and related methods of use. 2010. US patent application number: 11/541,987 Publication number: US 2007/0088013 A1 Filing date: Oct 2, 2006 Issued patent: US7846918 (Issue date Dec 7, 2010)
  • [17]Ariazi EA, Leitão A, Oprea TI, Chen B, Louis T, Bertucci AM, Sharma CGN, Gill SD, Kim HR, Shupp HA, Pyle JR, Madrack A, Donato AL, Cheng D, Paige JR, Jordan VC: Exemestane's 17-hydroxylated metabolite exerts biological effects as an androgen. Mol Cancer Ther 2007, 6(11):2817-2827.
  • [18]Buzzetti F, Di Salle E, Longo A, Briatico G: Synthesis and aromatase inhibition by potential metabolites of exemestane (6-methylenandrosta-1,4-diene-3,17-dione). Steroids 1993, 58(11):527-532.
  • [19]Gorlitzer K, Bonnekessel C, Jones PG, Palusczak A, Hartmann RW: Exemestan-derivate – Synthese und prüfung auf aromatase-hemmung. Die Pharmazie 2006, 61:575-581.
  • [20]Zafar S, Bibi M, Yousuf S, Choudhary MI: New metabolites from fungal biotransformation of an oral contraceptive agent: Methyloestrenolone. Steroids 2013, 78(4):418-425.
  • [21]Al-Maruf MA, Khan NT, Sakil MAA, Choudhary MI, Ali MU, Islam MA: Biotransformations of 11-ketoprogesterone by filamentous fungus, Fusarium lini. J Sci Res 2011, 3(2):347-356.
  • [22]Kamdem LK, Flockhart DA, Desta Z: In Vitro cytochrome P450-mediated metabolism of exemestane. Drug Metab Disposition 2011, 39(1):98-105.
  • [23]Mosmann T: Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65:55-63.
  文献评价指标  
  下载次数:45次 浏览次数:14次