期刊论文详细信息
Chemistry Central Journal
Molecular docking simulation studies on potent butyrylcholinesterase inhibitors obtained from microbial transformation of dihydrotestosterone
Salman Zafar2  M Iqbal Choudhary3  Kourosh Dalvandi1  Uzma Mahmood1  Zaheer Ul-Haq1 
[1] Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
[2] Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan
[3] Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah- 21412, Saudi Arabia
关键词: Molecular docking simulation;    Alzheimer’s disease;    Butyrylcholinesterase (BChE) inhibition;    Gibberella fujikuroi;    Macrophomina phaseolina;    Dihydrotestosterone (DHT);    Microbial transformation;   
Others  :  787830
DOI  :  10.1186/1752-153X-7-164
 received in 2013-05-06, accepted in 2013-08-29,  发布年份 2013
PDF
【 摘 要 】

Background

Biotransformation is an effective technique for the synthesis of libraries of bioactive compounds. Current study on microbial transformation of dihydrotestosterone (DHT) (1) was carried out to produce various functionalized metabolites.

Results

Microbial transformation of DHT (1) by using two fungal cultures resulted in potent butyrylcholinesterase (BChE) inhibitors. Biotransformation with Macrophomina phaseolina led to the formation of two known products, 5α-androstan-3β,17β-diol (2), and 5β-androstan-3α,17β-diol (3), while biotransformation with Gibberella fujikuroi yielded six known metabolites, 11α,17β-dihydroxyandrost-4-en-3-one (4), androst-1,4-dien-3,17-dione (5), 11α-hydroxyandrost-4-en-3,17-dione (6), 11α-hydroxyandrost-1,4-dien-3,17-dione (7), 12β-hydroxyandrost-1,4-dien-3,17-dione (8), and 16α-hydroxyandrost-1,4-dien-3,17-dione (9). Metabolites 2 and 3 were found to be inactive, while metabolite 4 only weakly inhibited the enzyme. Metabolites 57 were identified as significant inhibitors of BChE. Furthermore, predicted results from docking simulation studies were in complete agreement with experimental data. Theoretical results were found to be helpful in explaining the possible mode of action of these newly discovered potent BChE inhibitors. Compounds 8 and 9 were not evaluated for enzyme inhibition activity both in vitro and in silico, due to lack of sufficient quantities.

Conclusion

Biotransformation of DHT (1) with two fungal cultures produced eight known metabolites. Metabolites 57 effectively inhibited the BChE activity. Cholinesterase inhibition is among the key strategies in the management of Alzheimer’s disease (AD). The experimental findings were further validated by in silico inhibition studies and possible modes of action were deduced.

【 授权许可】

   
2013 Zafar et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140702202438187.pdf 1687KB PDF download
Figure 6. 273KB Image download
Figure 5. 75KB Image download
Figure 4. 46KB Image download
Figure 3. 54KB Image download
Figure 2. 43KB Image download
Figure 1. 14KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Mahato SB, Garai S: Advances in microbial steroid biotransformation. Steroids 1997, 62:332-345.
  • [2]Choudhary MI, Zafar S, Khan NT, Ahmed S, Noreen S, Marisini B, Al-Khedairy A, ur-Rahman A: Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. J Enzyme Inhib Med Chem 2012, 27:348-355.
  • [3]Anderson KM, Liao S: Selective retention of dihydrotestosterone by prostatic nuclei. Nature 1968, 219:277-279.
  • [4]Grino PB, Grifein JE, Wilson JD: Testosterone at high concentrations interacts with the human androgen receptor similarly to dihydrotestosterone. Endocrinology 1990, 126:1165-1172.
  • [5]Vierhapper H, Maier H, Nowotny P, Waldhausl W: Production rates of testosterone and of dihydrotestosterone in female pattern hair loss. Metabolism 2003, 52:927-929.
  • [6]Kalow W: Pharmacogenetics. Philadelphia: W. B. Saunders; 1962. Chapter 6
  • [7]Lehmann H, Liddell J: Medical Genetics. New York: Grune & Stratton; 1964. Chapter 3
  • [8]Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu Q, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK: Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci 2005, 102:17213-17218.
  • [9]Feher M, Williams CIJ: Effect of input differences on the results of docking calculations. J Chem Inf Model 2009, 49:1704-1714.
  • [10]Onodera K, Satou K, Hirota HJ: Evaluation of molecular docking programs for virtual screening. J Chem Inf Model 2007, 47:1609-1618.
  • [11]Nicolet Y, Lockridge O, Masson P, Fontecilla-Camps JC, Nachon F: Crystal structure of human butyrylcholinesterase and of its complexes with substrates and products. J Biol Chem 2003, 278:41141-41147.
  • [12]Bellavance E, Luu-The V, Poirier DJ: Potent and selective steroidal inhibitors of 17beta-hydroxysteroid dehydrogenase type 7, an enzyme that catalyzes the reduction of the key hormones estrone and dihydrotestosterone. J Med Chem 2009, 52:7488-7502.
  • [13]Norata GD, Cattaneo P, Poletti A, Catapano AL: The androgen derivative 5alpha-androstane-3beta,17beta-diol inhibits tumor necrosis factor alpha and lipopolysaccharide induced inflammatory response in human endothelial cells and in mice aorta. Atherosclerosis 2010, 212:100-106.
  • [14]Porter RBR, Gallimore WA, Reese PB: Steroid transformations with Exophiala jeanselmei var. lecanii-corni and Ceratocystis paradoxa. Steroids 1999, 64:770-779.
  • [15]Hunter C, Watts KR, Dedi C, Dodd HT: An unusual ring-a opening and other reaction in steroid transformation by the thermophilic fungus Myceliophthora thermophila. J Steroid Biochem Mol Biol 2009, 116:171-177.
  • [16]Langsch A, Giri S, Acikgoz A, Jasmund I, Frericks B, Bader A: Interspecies difference in liver-specific functions and biotransformation of testosterone of primary rat, porcine and human hepatocyte in an organotypical sandwich culture. Toxicol Lett 2009, 188:173-179.
  • [17]Pozo OJ, Marcos J, Ventura R, Fabregat A, Segura J: Testosterone metabolism revisited: discovery of new metabolites. Anal Bioanal Chem 2010, 398:1759-1770.
  • [18]Fahrbach M, Krauss M, Preiss A, Kohler HE, Hollender J: Anaerobic testosterone degradation in steroidobacter denitrificans-identification of transformation products. Environ Pollut 2010, 158:2572-2581.
  • [19]Wei W, Fan S, Wang F, Wei D: A new steroid-transforming strain of Mycobacterium neoaurum and cloning of 3-ketosteroid 9alpha-hydroxylase. Appl Biochem Biotechnol 2010, 162:1446-1456.
  • [20]Zhao Y, Gong P: Mutant an optimization of androstenonetranslation strain Mycobacterium sp. SH5. Shipi Yu Shengwu Jishu Xuebao 2010, 29:150.
  • [21]Chaudhari PN, Chaudhari BL, Chincholkar SB: Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett 2010, 32:695-699.
  • [22]Koshimura M, Utsukihara T, Hara A, Mizobuchi S, Horiuchi CA, Kuniyoshi MJ: Hydroxylation of steroid compounds by Gelasinospora retispora. J Mol Catal B-Eznym 2010, 67:72-77.
  • [23]Al-Aboudi A, Mohammad MY, Musharraf SG, Choudhary MI, ur-Rahman A: Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Nat Prod Res 2008, 22:1498-1509.
  • [24]Bartmanska A, Dmochowska-Gładysz J: Transformation of steroids by Trichoderma hamatum. Enzyme Microb Technol 2007, 40:1615-1621.
  • [25]Nelle S, Charles G, Cave A, Goutarel R: Sciences Chimiques. 1970, 27:153.
  • [26]Graham DLV, Lowe GM, Phipps DA, Bilton RF: Two novel methods used in biodegradation of bile acids and plant sterols. Biochem Soc Trans 1991, 19:52S.
  • [27]Numazwama M, Mutsumi A, Ogata M: Reactions of enolizable steroidal 4-en-3-ones and 17-ones with hypervalent iodine. Chem Pharm Bull 1988, 36:3381-3386.
  • [28]Zurad EG: New treatments for Alzheimer’s disease. Drug Benefit Trends 2001, 13:27-40.
  • [29]Stpankova S, Komers K: Cholinesterases and cholinesterase inhibitors. Curr Enzym Inhib 2008, 4:160-171.
  • [30]De-Ruggieri P, Gandolfi C, Guzzi U: Steroids 28. 10 Beta amino steroids: A new class of steroid derivatives. Tetrahedron Lett 1967, 23:2195-2200.
  • [31]Wang X, Liu H, Yan P, Liu J, Li Y, Sun Q, Wang C: Simultaneously rapid deprotection of 3-acyloxy groups and reduction of D-ring ketones (nitrile) of steroids using DIBAL-H/NiCl2. J Chem Res 2011, 35:291.
  • [32]Fieser LB, Huang W: Configuration of steroid bromoketones; a correction. J Am Chem Soc 1953, 75:4837-4838.
  • [33]Kabasakalian P, McGlotten J, Basch A, Yudis MD: The stereoselective electrochemical reduction of nonconjugated steroidal ketones and α-ketols. J Org Chem 1961, 26:1738-1744.
  • [34]Meister PD, Adolph W: 11alpha-hydroxylation of steroids by sporotrichum. Kalamazoo, Mich: Upjohn Co; 1959. [US Patent 2,877,162]
  • [35]Choudhary MI, Nasir M, Khan SN, Atif M, Ali RA, Khalil SM, ur-Rahman A: Microbial hydroxylation of hydroxyprogesterones and alpha-glucosidase inhibition activity of their metabolites. Z Naturforsch 2007, 62:593.
  • [36]Choudhary MI, Sultan S, Khan MTH, Yasin A, Shaheen F, Atta-ur-Rahman : Biotransformation of (+)-androst-4-ene-3,17-dione. Nat Prod Res 2004, 18:529-535.
  • [37]Faramarzi MI, Yazdi MT, Jahandar H, Amini M, Monsef-Esfahani HR: Studies on the microbial transformation of androst-1,4-dien-3,17-dione with Acremonium strictum. J Ind Microbiol Biotechnol 2007, 33:725-733.
  • [38]Bernstein S, Littell R, Williams JH: Steroidal cyclic ketals. iv.1 the conversion of 11-keto- to 11α-hydroxysteroids. the preparation of 11-epi-hydrocortisone, and δ4-androstene-11α-ol-3,17-dione. J Am Chem Soc 1953, 75:1481-1484.
  • [39]Raspe G, Kieslich K: 12β-Hydroxy steroid. Naturwissenschaften 1961, 48:479.
  • [40]Ellman GL, Courtney KD, Andres V Jr, Featherstone RM: A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961, 7:88-95.
  • [41]Cambridge Crystallographic Database: Gold version 5.1. Cambridge, U.K; 2008.
  • [42]Chemical Computing Group Inc: Molecular Operating Environment (MOE). 10th edition. 010 Sherbrook St. West, Suite # 910, Montreal, QC, Canada, H3A 2R7: Chemical Computing Group Inc; 2011.
  • [43]Biopharmics LLC: Surflex, version 2.11. San Mateo, CA, USA: Biopharmics LLC; 2007.
  • [44]Jain AN: Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 2003, 46:499-511.
  • [45]Berman HM: The protein data bank. Nucleic Acids Research 2000, 28(1):235-242.
  • [46]Halgren TA: MMFF VI. MMFF94s option for energy minimization studies. J Comp Chem 1999, 20:720-729.
  • [47]Halgren TA: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comp Chem 1996, 17:490-519.
  • [48]Corbeil CR, Williams CI, Labute PJ: Variability in docking success rates due to dataset preparation. Comput Aid Mol Des 2012, 26:775-786.
  文献评价指标  
  下载次数:46次 浏览次数:14次