期刊论文详细信息
Biology Direct
Co-regulation of translation in protein complexes
Piotr Zielenkiewicz2  Marlena Siwiak1 
[1]Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, Warsaw 02-106, Poland
[2]Laboratory of Plant Molecular Biology, Faculty of Biology, Warsaw University, Pawinskiego 5a, Warsaw 02-106, Poland
关键词: Protein production rate;    Computer modeling;    Protein-protein interaction;    Protein complex;    Translation regulation;    Translation control;   
Others  :  1180718
DOI  :  10.1186/s13062-015-0048-7
 received in 2014-11-05, accepted in 2015-03-13,  发布年份 2015
PDF
【 摘 要 】

Background

Co-regulation of gene expression has been known for many years, and studied widely both globally and for individual genes. Nevertheless, most analyses concerned transcriptional control, which in case of physically interacting proteins and protein complex subunits may be of secondary importance. This research is the first quantitative analysis that provides global-scale evidence for translation co-regulation among associated proteins.

Results

By analyzing the results of our previous quantitative model of translation, we have demonstrated that protein production rates plus several other translational parameters, such as mRNA and protein abundance, or number of produced proteins from a gene, are well concerted between stable complex subunits and party hubs. This may be energetically favorable during synthesis of complex building blocks and ensure their accurate production in time. In contrast, for connections with regulatory particles and date hubs translational co-regulation is less visible, indicating that in these cases maintenance of accurate levels of interacting particles is not necessarily beneficial.

Conclusions

Similar results obtained for distantly related model organisms, Saccharomyces cerevisiae and Homo sapiens, suggest that the phenomenon of translational co-regulation applies to the variety of living organisms and concerns many complex constituents. This phenomenon was also observed among the set of functionally linked proteins from Escherichia coli operons. This leads to the conclusion that translational regulation of a protein should always be studied with respect to the expression of its primary interacting partners.

Reviewers

This article was reviewed by Sandor Pongor and Claus Wilke.

【 授权许可】

   
2015 Siwiak and Zielenkiewicz; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150514011202186.pdf 1663KB PDF download
Figure 4. 49KB Image download
Figure 3. 49KB Image download
Figure 2. 37KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Osbourn AE, Field B: Operons. Cell Mol Life Sci 2009, 66(23):3755-75.
  • [2]Davila Lopez M, Martinez Guerra JJ, Samuelsson T: Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes. PLoS ONE 2010, 5(5):10654.
  • [3]Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al.: An atlas of combinatorial transcriptional regulation in mouse and man. Cell 2010, 140(5):744-52.
  • [4]Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23:324-8.
  • [5]Huynen M, Snel B, Lathe W, Bork P: Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 2000, 10(8):1204-10.
  • [6]Teichmann SA, Babu MM: Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol 2002, 20(10):407-10.
  • [7]Spriggs KA, Bushell M, Willis AE: Translational regulation of gene expression during conditions of cell stress. Mol Cell 2010, 40(2):228-37.
  • [8]Damgaard CK, Lykke-Andersen J: Translational coregulation of 5’TOP mRNAs by TIA-1 and TIAR. Genes Dev 2011, 25(19):2057-68.
  • [9]Duncan CD, Mata J: Widespread cotranslational formation of protein complexes. PLoS Genet 2011, 7(12):1002398.
  • [10]de Lichtenberg U, Jensen LJ, Brunak S, Bork P: Dynamic complex formation during the yeast cell cycle. Science 2005, 307(5710):724-7.
  • [11]Ge H, Liu Z, Church GM, Vidal M: Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 2001, 29(4):482-6.
  • [12]Kemmeren P, van Berkum NL, Vilo J, Bijma T, Donders R, Brazma A, et al.: Protein interaction verification and functional annotation by integrated analysis of genome-scale data. Mol Cell 2002, 9(5):1133-43.
  • [13]Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, et al.: Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 2004, 430(6995):88-93.
  • [14]Siwiak M, Zielenkiewicz P: A comprehensive, quantitative, and genome-wide model of translation. PLoS Comput Biol 2010, 6(7):1000865.
  • [15]Siwiak M, Zielenkiewicz P: Transimulation - protein biosynthesis web service. PLoS ONE 2013, 8(9):73943.
  • [16]Yu H, Braun P, YÄśldÄśrÄśm MA, Lemmens I, Venkatesan K, et al.: High-quality binary protein interaction map of the yeast interactome network. Science 2008, 322(5898):104-10.
  • [17]Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz BJ, Hurst LD, et al.: Stratus not altocumulus: a new view of the yeast protein interaction network. PLoS Biol 2006, 4(10):317.
  • [18]Kim PM, Lu LJ, Xia Y, Gerstein MB: Relating three-dimensional structures to protein networks provides evolutionary insights. Science 2006, 314(5807):1938-41.
  • [19]Agarwal S, Deane CM, Porter MA, Jones NS: Revisiting date and party hubs: novel approaches to role assignment in protein interaction networks. PLoS Comput Biol 2010, 6(6):1000817.
  • [20]Wang H, Zheng H: Correlation of genomic features with dynamic modularity in the yeast interactome: a view from the structural perspective. IEEE Trans Nanobiosci 2012, 11(3):244-50.
  • [21]Chang X, Xu T, Li Y, Wang K: Dynamic modular architecture of protein-protein interaction networks beyond the dichotomy of ’date’ and ’party’ hubs. Sci Rep 2013, 3:1691.
  • [22]Lu P, Vogel C, Wang R, Yao X, Marcotte EM: Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 2007, 25(1):117-24.
  • [23]Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al.: Single-cell proteomic analysis of S.cerevisiae reveals the architecture of biological noise. Nature 2006, 441(7095):840-6.
  • [24]Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, et al.: Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 2011, 7:548.
  • [25]Hu P, Janga SC, Babu M, Diaz-Mejia JJ, Butland G, Yang W, et al.: Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 2009, 7(4):96.
  • [26]Rocha EP: The organization of the bacterial genome. Annu Rev Genet 2008, 42:211-33.
  • [27]Blumenthal T: Operons in eukaryotes. Brief Funct Genomic Proteomic 2004, 3(3):199-211.
  • [28]Newman MEJ: The structure and function of complex networks. SIREV 2003, 45:167-256.
  • [29]Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, et al.: Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 2012, 40(Database-Issue):700-5.
  • [30]Prasad TSK, Goel R, Kandasamy K, Keerthikumar S, 0002 SK, Mathivanan S, et al. Human Protein Reference Database - 2009 update. Nucleic Acids Res. 2009; 37(Database-Issue):767–72.
  • [31]Rajagopala SV, Sikorski P, Kumar A, Mosca R, Vlasblom J, Arnold R, et al.: The binary protein-protein interaction landscape of Escherichia coli,. Nat Biotechnol 2014, 32(3):285-90.
  • [32]Uniprot Consortium: Activities at the Universal Protein Resource (UniProt) Nucleic Acids Res 2014, 42(Database issue):191-8.
  • [33]Diedenhofen B. Cocor: Comparing Correlations. (2013). R package version 1.0-0.
  • [34]Zou GY: Toward using confidence intervals to compare correlations. Psychol Methods 2007, 12(4):399-413.
  • [35]Peng RD. Simpleboot: Simple Bootstrap Routines. 2008. R package version 1.1-3.
  • [36]von der Haar T: A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst Biol 2008, 2:87. BioMed Central Full Text
  • [37]Morrison DE, Henkel RE (eds.): The Significance Test Controversy. Aldine Publ., Chicago, USA; 1970.
  • [38]Harlow LL, Mulaik SA, Steiger JH: What If There Were No Significance Tests?. Lawrence Erlbaum Associates Inc, Mahwah, USA; 1997.
  • [39]Cumming G: Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. Routledge Academic, New York City, USA; 2011.
  • [40]Taboada B, Ciria R, Martinez-Guerrero CE, Merino E: ProOpDB: Prokaryotic Operon DataBase. Nucleic Acids Res 2012, 40(Database-Issue):627-31.
  • [41]Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28(1):27-30.
  文献评价指标  
  下载次数:50次 浏览次数:21次