期刊论文详细信息
BMC Neuroscience
Time dynamics of protein complexes in the AD11 transgenic mouse model for Alzheimer’s disease like pathology
Concettina Guerra2  Giovanni Felici1  Fabio Cumbo1  Paola Bertolazzi1  Antonino Cattaneo3  Rossella Brandi4  Mara D’Onofrio4  Ivan Arisi4 
[1]Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti” (IASI-CNR), Rome, Italy
[2]College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
[3]Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
[4]Genomics Facility, European Brain Research Institute (EBRI) Rita Levi-Montalcini, Via del Fosso di Fiorano, 64, Rome, 00143, Italy
关键词: AD11 mouse model;    Protein complex;    Network;    Correlation;    Protein-protein interaction;    Neurodegeneration;    NGF;    Alzheimers disease;   
Others  :  1210190
DOI  :  10.1186/s12868-015-0155-5
 received in 2014-12-01, accepted in 2015-03-11,  发布年份 2015
PDF
【 摘 要 】

Background

Many approaches exist to integrate protein-protein interaction data with other sources of information, most notably with gene co-expression data, to obtain information on network dynamics. It is of interest to look at groups of interacting gene products that form a protein complex. We were interested in applying new tools to the characterization of pathogenesis and dynamic events of an Alzheimer’s-like neurodegenerative model, the AD11 mice, expressing an anti-NGF monoclonal antibody. The goal was to quantify the impact of neurodegeneration on protein complexes, by measuring the correlation between gene expression data by different metrics.

Results

Data were extracted from the gene expression profile of AD11 brain, obtained by Agilent microarray, at 1, 3, 6, 15 months of age. For genes coding proteins in complexes, the correlation matrix of pairwise expression was computed. The dynamics between correlation matrices at different time points was evaluated: paired T-test between average correlation levels and a normalized Euclidean distance with z-score. We unveiled a differential wiring of interactions in a set of complexes, whose network structure discriminates between transgenic and control mice. Furthermore, we analyzed the dynamics of gene expression values, by looking at changes in gene-to-gene correlation over time and identified those complexes that exhibit a different timedependent behaviour between transgenic and controls. The most significant changes in correlation dynamics are concentrated in the early stage of disease, with higher correlation in AD11 mice compared to controls. Many complexes go through dynamic changes over time, showing the role of the dysfunctional immunoproteasome, as early neurodegenerative disease event. Furthermore, this analysis shows key events in the neurodegeneration process of the AD11 model, by identifying significant differences in co-expression values of other complexes, such as parvulin complex, with a role in protein misfolding and proteostasis, and of complexes involved in transcriptional mechanisms.

Conclusions

We have proposed a novel approach to analyze the network structure of protein complexes, by two different measures to evaluate the dynamics of gene-gene correlation matrices from gene expression profiles. The methodology was able to investigate the re-organization of interactions within protein complexes in the AD11 model of neurodegeneration.

【 授权许可】

   
2015 Arisi et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150603024505330.pdf 4325KB PDF download
Fig. 6. 24KB Image download
Figure 4. 37KB Image download
Figure 3. 49KB Image download
Figure 2. 121KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Fig. 6.

【 参考文献 】
  • [1]Bertolazzi P, Bock ME, Guerra C: On the functional and structural characterization of hubs in protein-protein interaction networks. Biotechnol Adv 2013, 31:274-86.
  • [2]Levy ED, Pereira-Leal JB: Evolution and dynamics of protein interactions and networks. Curr Opin Struct Biol 2008, 18:349-57.
  • [3]Przytycka TM, Singh M, Slonim DK: Toward the dynamic interactome: it’s about time. Brief Bioinform 2010, 11:15-29.
  • [4]Stelzl U, Wanker EE: The value of high quality protein-protein interaction networks for systems biology. Curr Opin Chem Biol 2006, 10:551-8.
  • [5]Vidal M, Cusick ME, Barabasi AL: Interactome networks and human disease. Cell 2011, 144:986-98.
  • [6]Jansen R, Greenbaum D, Gerstein M: Relating whole-genome expression data with protein-protein interactions. Genome Res 2002, 12:37-46.
  • [7]Tuncbag N, Kar G, Gursoy A, Keskin O, Nussinov R: Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol Biosyst 2009, 5:1770-8.
  • [8]de Lichtenberg U, Jensen LJ, Brunak S, Bork P: Dynamic complex formation during the yeast cell cycle. Science 2005, 307:724-7.
  • [9]Srihari S, Leong HW: Temporal dynamics of protein complexes in PPI networks: a case study using yeast cell cycle dynamics. BMC Bioinf 2012, 17(13 Suppl):S16.
  • [10]Tang X, Wang J, Liu B, Li M, Chen G, Pan Y: A comparison of the functional modules identified from time course and static PPI network data. BMC Bioinf 2011, 12:339. BioMed Central Full Text
  • [11]Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, et al.: Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 2009, 27:199-204.
  • [12]Wang J, Peng X, Li M, Pan Y: Construction and application of dynamic protein interaction network based on time course gene expression data. Proteomics 2013, 13:301-12.
  • [13]Vlasblom J, Wodak SJ: Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinf 2009, 10:99. BioMed Central Full Text
  • [14]Palla G, Derenyi I, Farkas I, Vicsek T: Uncovering the overlapping community structure of complex networks in nature and society. Nature 2005, 435:814-8.
  • [15]Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinf 2003, 4:2. BioMed Central Full Text
  • [16]Ciriello G, Mina M, Guzzi PH, Cannataro M, Guerra C: AlignNemo: a local network alignment method to integrate homology and topology. PLoS One 2012, 7:e38107.
  • [17]Arisi I, D’Onofrio M, Brandi R, Felsani A, Capsoni S, Drovandi G, et al.: Gene expression biomarkers in the brain of a mouse model for Alzheimer’s disease: mining of microarray data by logic classification and feature selection. J Alzheimers Dis 2011, 24:721-38.
  • [18]D’Onofrio M, Arisi I, Brandi R, Di Mambro A, Felsani A, Capsoni S, et al.: Early inflammation and immune response mRNAs in the brain of AD11 anti-NGF mice. Neurobiol Aging 2011, 32:1007-22.
  • [19]Capsoni S, Brandi R, Arisi I, D’Onofrio M, Cattaneo A: A dual mechanism linking NGF/proNGF imbalance and early inflammation to Alzheimer’s disease neurodegeneration in the AD11 anti-NGF mouse model. CNS Neurol Disord Drug Targets 2011, 10:635-47.
  • [20]Ruberti F, Capsoni S, Comparini A, Di Daniel E, Franzot J, Gonfloni S, et al.: Phenotypic knockout of nerve growth factor in adult transgenic mice reveals severe deficits in basal forebrain cholinergic neurons, cell death in the spleen, and skeletal muscle dystrophy. J Neurosci 2000, 20:2589-601.
  • [21]Fujiyama S, Yanagida M, Hayano T, Miura Y, Isobe T, Fujimori F, et al.: Isolation and proteomic characterization of human Parvulin-associating preribosomal ribonucleoprotein complexes. J Biol Chem 2002, 277:23773-80.
  • [22]Mueller JW, Bayer P: Small family with key contacts: par14 and par17 parvulin proteins, relatives of pin1, now emerge in biomedical research. Perspect Medicin Chem 2008, 2:11-20.
  • [23]Ando K, Dourlen P, Sambo AV, Bretteville A, Belarbi K, Vingtdeux V, et al.: Tau pathology modulates Pin1 post-translational modifications and may be relevant as biomarker. Neurobiol Aging 2013, 34:757-69.
  • [24]Kimura T, Tsutsumi K, Taoka M, Saito T, Masuda-Suzukake M, Ishiguro K, et al.: Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 2013, 288:7968-77.
  • [25]Pastorino L, Ma SL, Balastik M, Huang P, Pandya D, Nicholson L, et al.: Alzheimer’s disease-related loss of Pin1 function influences the intracellular localization and the processing of AbetaPP. J Alzheimers Dis 2012, 30:277-97.
  • [26]Wang JZ, Zhang YH, Sun XW, Li YL, Li SR, Zhang Y, et al.: Focusing on the structure and the function of Pin1: new insights into the opposite effects of fever on cancers and Alzheimer’s disease. Med Hypotheses 2013, 81:282-4.
  • [27]Jung C, Mittler G, Oswald F, Borggrefe T: RNA helicase Ddx5 and the noncoding RNA SRA act as coactivators in the Notch signaling pathway. Biochim Biophys Acta 1833, 2013:1180-9.
  • [28]Ghosh S, Thakur MK: Interaction of estrogen receptor-alpha transactivation domain with nuclear proteins of mouse brain: p68 RNA helicase shows age- and sex-specific change. J Neurosci Res 2009, 87:1323-8.
  • [29]Arun G, Akhade VS, Donakonda S, Rao MR: mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells. Mol Cell Biol 2012, 32:3140-52.
  • [30]Wang R, Jiao Z, Li R, Yue H, Chen L: p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-kappaB transcription factor p50. Neuro Oncol 2012, 14:1116-24.
  • [31]Kar A, Fushimi K, Zhou X, Ray P, Shi C, Chen X, et al.: RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5′ splice site. Mol Cell Biol 2011, 31:1812-21.
  • [32]Agholme L, Nath S, Domert J, Marcusson J, Kagedal K, Hallbeck M: Proteasome inhibition induces stress kinase dependent transport deficits–implications for Alzheimer’s disease. Mol Cell Neurosci 2014, 58:29-39.
  • [33]Chesser AS, Pritchard SM, Johnson GV: Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 2013, 4:122.
  • [34]Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al.: Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 2014, 112:24-49.
  • [35]Saido T, Leissring MA: Proteolytic degradation of amyloid beta-protein. Cold Spring Harb Perspect Med 2012, 2:a006379.
  • [36]Cecarini V, Bonfili L, Amici M, Angeletti M, Keller JN, Eleuteri AM: Amyloid peptides in different assembly states and related effects on isolated and cellular proteasomes. Brain Res 2008, 1209:8-18.
  • [37]Orre M, Kamphuis W, Dooves S, Kooijman L, Chan ET, Kirk CJ, et al.: Reactive glia show increased immunoproteasome activity in Alzheimer’s disease. Brain 2013, 136:1415-31.
  • [38]Yen SS: Proteasome degradation of brain cytosolic tau in Alzheimer’s disease. Int J Clin Exp Pathol 2011, 4:385-402.
  • [39]Ferrington DA, Gregerson DS: Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 2012, 109:75-112.
  • [40]Foss GS, Larsen F, Solheim J, Prydz H: Constitutive and interferon-gamma-induced expression of the human proteasome subunit multicatalytic endopeptidase complex-like 1. Biochim Biophys Acta 1998, 1402:17-28.
  • [41]Hussong SA, Kapphahn RJ, Phillips SL, Maldonado M, Ferrington DA: Immunoproteasome deficiency alters retinal proteasome’s response to stress. J Neurochem 2010, 113:1481-90.
  • [42]Heink S, Ludwig D, Kloetzel PM, Kruger E: IFN-gamma-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci U S A 2005, 102:9241-6.
  • [43]Jia Y, Song T, Wei C, Ni C, Zheng Z, Xu Q, et al.: Negative regulation of MAVS-mediated innate immune response by PSMA7. J Immunol 2009, 183:4241-8.
  • [44]Hu XT, Chen W, Zhang FB, Shi QL, Hu JB, Geng SM, et al.: Depletion of the proteasome subunit PSMA7 inhibits colorectal cancer cell tumorigenicity and migration. Oncol Rep 2009, 22:1247-52.
  • [45]Berhane S, Areste C, Ablack JN, Ryan GB, Blackbourn DJ, Mymryk JS, et al.: Adenovirus E1A interacts directly with, and regulates the level of expression of, the immunoproteasome component MECL1. Virology 2011, 421:149-58.
  • [46]Aso E, Lomoio S, Lopez-Gonzalez I, Joda L, Carmona M, Fernandez-Yague N, et al.: Amyloid generation and dysfunctional immunoproteasome activation with disease progression in animal model of familial Alzheimer’s disease. Brain Pathol 2012, 22:636-53.
  • [47]Mishto M, Bellavista E, Santoro A, Stolzing A, Ligorio C, Nacmias B, et al.: Immunoproteasome and LMP2 polymorphism in aged and Alzheimer’s disease brains. Neurobiol Aging 2006, 27:54-66.
  • [48]Tsai KL, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Asturias FJ: Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 2014, 157:1430-44.
  • [49]Carlsten JO, Zhu X, Gustafsson CM: The multitalented Mediator complex. Trends Biochem Sci 2013, 38:531-7.
  • [50]Schiano C, Casamassimi A, Vietri MT, Rienzo M, Napoli C: The roles of mediator complex in cardiovascular diseases. Biochim Biophys Acta 1839, 2014:444-51.
  • [51]Wang X, Yang N, Uno E, Roeder RG, Guo S: A subunit of the mediator complex regulates vertebrate neuronal development. Proc Natl Acad Sci U S A 2006, 103:17284-9.
  • [52]Lande-Diner L, Boyault C, Kim JY, Weitz CJ: A positive feedback loop links circadian clock factor CLOCK-BMAL1 to the basic transcriptional machinery. Proc Natl Acad Sci U S A 2013, 110:16021-6.
  • [53]Musiek ES, Lim MM, Yang G, Bauer AQ, Qi L, Lee Y, et al.: Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 2013, 123:5389-400.
  • [54]Lariviere L, Plaschka C, Seizl M, Wenzeck L, Kurth F, Cramer P: Structure of the Mediator head module. Nature 2012, 492:448-51.
  • [55]Furumoto T, Tanaka A, Ito M, Malik S, Hirose Y, Hanaoka F, et al.: A kinase subunit of the human mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells 2007, 12:119-32.
  • [56]Soreq H: Novel roles of non-coding brain RNAs in health and disease. Front Mol Neurosci 2014, 7:55.
  • [57]Kong Y, Wu J, Yuan L: MicroRNA expression analysis of adult-onset Drosophila Alzheimer’s disease model. Curr Alzheimer Res 2014, 11:882-91.
  • [58]Rodriguez-Ortiz CJ, Baglietto-Vargas D, Martinez-Coria H, LaFerla FM, Kitazawa M: Upregulation of miR-181 decreases c-Fos and SIRT-1 in the hippocampus of 3xTg-AD mice. J Alzheimers Dis 2014, 42:1229-38.
  • [59]Galimberti D, Villa C, Fenoglio C, Serpente M, Ghezzi L, Cioffi SM, et al.: Circulating miRNAs as potential biomarkers in Alzheimer’s disease. J Alzheimers Dis 2014, 42:1261-7.
  • [60]Tan L, Yu JT, Tan MS, Liu QY, Wang HF, Zhang W, et al.: Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J Alzheimers Dis 2014, 40:1017-27.
  • [61]Lau P, Bossers K, Janky R, Salta E, Frigerio CS, Barbash S, et al.: Alteration of the microRNA network during the progression of Alzheimer’s disease. EMBO Mol Med 2013, 5:1613-34.
  • [62]Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, et al.: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008, 28:1213-23.
  • [63]Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, et al.: Altered microRNA regulation in Huntington’s disease models. Exp Neurol 2011, 227:172-9.
  • [64]Hebert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, et al.: Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010, 19:3959-69.
  • [65]Uchida Y, Takio K, Titani K, Ihara Y, Tomonaga M: The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 1991, 7:337-47.
  • [66]El Ghazi I, Martin BL, Armitage IM: New proteins found interacting with brain metallothionein-3 are linked to secretion. Int J Alzheimers Dis 2010, 2011:208634.
  • [67]Luo Y, Xu Y, Bao Q, Ding Z, Zhu C, Huang ZX, et al.: The molecular mechanism for human metallothionein-3 to protect against the neuronal cytotoxicity of Abeta(1–42) with Cu ions. J Biol Inorg Chem 2013, 18:39-47.
  • [68]Manso Y, Carrasco J, Comes G, Meloni G, Adlard PA, Bush AI, et al.: Characterization of the role of metallothionein-3 in an animal model of Alzheimer’s disease. Cell Mol Life Sci 2012, 69:3683-700.
  • [69]Slaymaker IM, Chen XS: MCM structure and mechanics: what we have learned from archaeal MCM. Subcell Biochem 2012, 62:89-111.
  • [70]Bonda DJ, Evans TA, Santocanale C, Llosa JC, Vina J, Bajic V, et al.: Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging (Albany NY) 2009, 1:382-8.
  • [71]Schrotter A, Mastalski T, Nensa FM, Neumann M, Loosse C, Pfeiffer K, et al.: FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres - potential relevance to Alzheimer’s disease. J Cell Sci 2013, 126:2480-92.
  • [72]Frade JM, Ovejero-Benito MC: Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 2015, 14:712-20.
  • [73]Takata K, Kitamura Y, Nakata Y, Matsuoka Y, Tomimoto H, Taniguchi T, et al.: Involvement of WAVE accumulation in Abeta/APP pathology-dependent tangle modification in Alzheimer’s disease. Am J Pathol 2009, 175:17-24.
  • [74]Yamamoto A, Behl C: Human Nck-associated protein 1 and its binding protein affect the metabolism of beta-amyloid precursor protein with Swedish mutation. Neurosci Lett 2001, 316:50-4.
  • [75]Kikugawa S, Nishikata K, Murakami K, Sato Y, Suzuki M, Altaf-Ul-Amin M, et al.: PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from h-invitational protein-protein interactions integrative dataset. BMC Syst Biol 2012, 6(Suppl 2):S7. BioMed Central Full Text
  • [76]Liu CT, Yuan S, Li KC: Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res 2009, 37:526-32.
  • [77]Tornow S, Mewes HW: Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res 2003, 31:6283-9.
  • [78]Laganowsky A, Reading E, Hopper JT, Robinson CV: Mass spectrometry of intact membrane protein complexes. Nat Protoc 2013, 8:639-51.
  • [79]Cattaneo A, Rapposelli B, Calissano P: Three distinct types of monoclonal antibodies after long-term immunization of rats with mouse nerve growth factor. J Neurochem 1988, 50:1003-10.
  • [80]Covaceuszach S, Cassetta A, Konarev PV, Gonfloni S, Rudolph R, Svergun DI, et al.: Dissecting NGF interactions with TrkA and p75 receptors by structural and functional studies of an anti-NGF neutralizing antibody. J Mol Biol 2008, 381:881-96.
  • [81]Ruepp A, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Stransky M, et al.: CORUM: the comprehensive resource of mammalian protein complexes. Nucleic Acids Res 2008, 36:D646-50.
  • [82]Hovatta I, Zapala MA, Broide RS, Schadt EE, Libiger O, Schork NJ, et al.: DNA variation and brain region-specific expression profiles exhibit different relationships between inbred mouse strains: implications for eQTL mapping studies. Genome Biol 2007, 8:R25. BioMed Central Full Text
  文献评价指标  
  下载次数:32次 浏览次数:16次