| Biology Direct | |
| Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes | |
| Scott L Hooper1  Helaine J Burstein1  | |
| [1] Department of Biological Sciences, Ohio University, Athens, OH 45701, USA | |
| 关键词: Mitochondrial pH; Prokaryotic symbiosis; Nuclear pore; Nuclear membrane; Bacterial nanotubes; Prokaryotic respiration; Biofilm; Eukaryotic origin; | |
| Others : 1084077 DOI : 10.1186/1745-6150-9-24 |
|
| received in 2014-05-29, accepted in 2014-11-03, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Internalization-based hypotheses of eukaryotic origin require close physical association of host and symbiont. Prior hypotheses of how these associations arose include chance, specific metabolic couplings between partners, and prey-predator/parasite interactions. Since these hypotheses were proposed, it has become apparent that mixed-species, close-association assemblages (biofilms) are widespread and predominant components of prokaryotic ecology. Which forces drove prokaryotes to evolve the ability to form these assemblages are uncertain. Bacteria and archaea have also been found to form membrane-lined interconnections (nanotubes) through which proteins and RNA pass. These observations, combined with the structure of the nuclear envelope and an energetic benefit of close association (see below), lead us to propose a novel hypothesis of the driving force underlying prokaryotic close association and the origin of eukaryotes.
Results
Respiratory proton transport does not alter external pH when external volume is effectively infinite. Close physical association decreases external volume. For small external volumes, proton transport decreases external pH, resulting in each transported proton increasing proton motor force to a greater extent. We calculate here that in biofilms this effect could substantially decrease how many protons need to be transported to achieve a given proton motor force. Based as it is solely on geometry, this energetic benefit would occur for all prokaryotes using proton-based respiration.
Conclusions
This benefit may be a driving force in biofilm formation. Under this hypothesis a very wide range of prokaryotic species combinations could serve as eukaryotic progenitors. We use this observation and the discovery of prokaryotic nanotubes to propose that eukaryotes arose from physically distinct, functionally specialized (energy factory, protein factory, DNA repository/RNA factory), obligatorily symbiotic prokaryotes in which the protein factory and DNA repository/RNA factory cells were coupled by nanotubes and the protein factory ultimately internalized the other two. This hypothesis naturally explains many aspects of eukaryotic physiology, including the nuclear envelope being a folded single membrane repeatedly pierced by membrane-bound tubules (the nuclear pores), suggests that species analogous or homologous to eukaryotic progenitors are likely unculturable as monocultures, and makes a large number of testable predictions.
Reviewers
This article was reviewed by Purificación López-García and Toni Gabaldón.
【 授权许可】
2014 Hooper and Burstein; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150113144210208.pdf | 2033KB | ||
| Figure 6. | 94KB | Image | |
| Figure 5. | 45KB | Image | |
| Figure 4. | 62KB | Image | |
| Figure 3. | 60KB | Image | |
| Figure 2. | 105KB | Image | |
| Figure 1. | 67KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Anderson SGE, Zomorodipour A, Anderson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslun AK, Eriksson A, Winkler HH, Kurland CG: The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998, 396:133-140.
- [2]Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Degan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N: A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor. Mol Biol Evol 2009, 26:1533-1548.
- [3]Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W: A genome phylogeny for mitochondria among α-proteobacterial and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 2004, 21:1643-1660.
- [4]Lasek-Nesselquist E, Gogarten JP: The effects of model chioce and mitigating bias on the ribosomal tree of life. Mol Phylogenet Evol 2013, 69:17-38.
- [5]Martin W, Hoffmeister M, Rotte C, Henze K: An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 2001, 382:1521-1539.
- [6]Pisani D, Cotton JA, McInerney JO: Supertrees disentangle the chimeric origins of eukaryotic origins. Mol Biol Evol 2007, 24:1752-1760.
- [7]Thiergart T, Landan G, Schenk M, Dagan T, Martin WF: An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 2012, 4:466-485.
- [8]van der Giezen M, Tovar J, Clark CG: Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 2005, 244:175-225.
- [9]Williams KP, Sobral BW, Dickerman AW: A robust species tree for the alphaproteobacteria. J Bacteriol 2007, 189:4578-4586.
- [10]Koonin EV: The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol 2010., 11doi:10.1186/gb-2020-11-5-209
- [11]Cotton JA, McInerney JO: Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function. P Natl Acad Sci USA 2010, 107:17252-17255.
- [12]Katz LA: Origin and diversification of eukaryotes. Annu Rev Microbiol 2012, 66:411-427.
- [13]Esser C, Martin W, Dagan T: The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol Lett 2006, 3:180-184.
- [14]Saruhashi S, Hamada K, Miyata D, Horiike T, Shinozawa T: Comprehensive analysis of the origin of eukaryotic genomes. Genes Genet Syst 2008, 83:285-291.
- [15]Gupta RS, Golding GB: Evolution of ASP70 gene and its implications regarding relationships between archaeabacteria, eubacteria, and eukaryotes. J Mol Evol 1993, 37:573-582.
- [16]Gupta RS, Aitken K, Falah M, Singh B: Cloning of Giardia lamblia heat shock protein HSP70 homologs: implications regarding origin of eukaryotic cells and of endoplasmic reticulum. P Natl Acad Sci USA 1994, 91:2895-2899.
- [17]Fournier GP, Dick AA, Williams D, Gogarten JP: Evolution of the archaea: emerging views on origins and phylogeny. Res Microbiol 2011, 162:92-98.
- [18]Sagan L: On the origin of mitosing cells. J Theor Biol 1967, 14:225-274.
- [19]Roger AJ: Reconstructing early events in eukaryotic evolution. Amer Nat 1999, 154:S146-S163.
- [20]Vellai T, Takáks K, Vida G: A new aspect to the origin and evolution of eukaryotes. J Mol Evol 1998, 46:499-507.
- [21]Godde JS: Breaking through a phylogenetic impasse: a pair of associated archaea might have played host in the endosymbiotic origin of eukaryotes. Cell & Bioscience 2012, 2:29.
- [22]Yutin N, Wolf MY, Wolf YI, Koonin EV: The origins of phagocytosis and eukaryogenesis. Biol Direct 2009, 4:9.
- [23]Mulkidjanian AY, Galperin MY, Makarova KS, Wolf YI, Koonin EV: Evolutionary primacy of sodium bioenergetics. Biol Direct 2008, 3:13.
- [24]Häse CC, Fedorova ND, Galperin MY, Dibrov PA: Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 2001, 65:353-370.
- [25]Santo-Domingo J, Demaurex N: The renaissance of mitochondrial pH. J Gen Physiol 2012, 139:415-423.
- [26]Schäfer G, Engelhard M, Müller V: Bioenergetics of the archaea. Microbiol Mol Biol Rev 1999, 63:570-620.
- [27]Junge W: ATP synthase and other motor proteins. P Natl Acad Sci USA 1999, 96:4735-4737.
- [28]Lambert AJ, Brand MD: Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 2004, 382:511-517.
- [29]Bakker EP: Accumulation of thallous ions (Tl+) as a measure of the electrical potential difference across the cytoplasmic membrane of bacteria. Biochemistry (Mosc) 1978, 17:2899-2904.
- [30]Bagramyan K, Trchounian A: Decrease of redox potential in the anaerobic growing E. coli suspension and proton-potassium exchange. Bioelectrochem Bioenerg 1997, 43:129-134.
- [31]Rosen BP: Recent advances in bacterial ion transport. Annu Rev Microbiol 1986, 40:263-286.
- [32]De Hertogh B, Lantin A-C, Baret P, Goffeau A: The archaeal P-type ATPases. J Bioenerg Biomembr 2004, 36:135-142.
- [33]Epstein W: The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol 2003, 75:293-320.
- [34]Luoto HH, Nordbo E, Baykov AA, Lahti R, Malinen AM: Membrane Na+-pyrophosphatases can transport protons at low sodium concentrations. J Biol Chem 2013, 288:35489-35499.
- [35]Baykov AA, Malinen AM, Luote HH, Lhti R: Pyrophosphate-fueled Na+ and H+ transport in prokaryotes. Microbiol Mol Biol Rev 2013, 77:267-276.
- [36]Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vanathevan J, Bass S, Qin H, Draxoi L, Sellers P, McDonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzbert SL, Smith HO, Colwell RR, Mekalanos JJ, et al.: DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 2000, 406:477-484.
- [37]Tokuda H, Unemoto T: Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J Biol Chem 1982, 257:10007-10014.
- [38]Kawano M, Abuki R, Igarashi K, Kakinuma Y: Evidence for Na+ influx via the NtpJ protein of the KtrII K+ uptake system in Enterococcus hirae. J Bacteriol 2000, 182:2507-2512.
- [39]MacLeod RA, Onofrey E: Nutrition and metabolism of marine bacteria. III. The relation of sodium and potassium to growth. J Cell Comp Physiol 1957, 50:389-401.
- [40]Christian JHB, Waltho JA: The sodium and potassium content of non-halophilic bacteria in relation to salt tolerance. J Gen Microbiol 1961, 25:97-102.
- [41]Schultz SG, Solomon AK: Cation transport in Escherichia coli. I. Intracellular Na and K concentrations and net cation movement. J Gen Physiol 1961, 45:355-369.
- [42]Takacs FP, Matula TI, MacLeod RA: Nutrition and metabolism of marine bacteria: XIII. Intracellular concentrations of sodium and potassium ions in a marine pseudomonad. J Bacteriol 1963, 87:510-518.
- [43]Castle AM, Macaab RM, Shulman RG: Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23Na nuclear magnetic resonance. J Biol Chem 1986, 261:3288-3294.
- [44]Lo C, Leake MC, Berry RM: Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. Biophys J 2006, 90:357-365.
- [45]Nakajima H, Yamato I, Anraku Y: Quantitative analysis of potassium ion pool in Escherichia coli K-12. J Biochem (Tokyo) 1979, 85:303-310.
- [46]Martirosov SM, Trchounian AA: An electrochemical study of energy-dependent potassium accumulation in E. coli. XI. The Trk system in anaerobically and aerobically grown cells. Bioelectrochem Bioenerg 1986, 15:417-426.
- [47]Dinnbier U, Limpinsel E, Schmid R, Bakker EP: Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 1988, 150:348-357.
- [48]Martin DD, Ciulla RA, Roberts MF: Osmoadaptation in archaea. Appl Environ Microbiol 1999, 65:1815-1825.
- [49]Jones HE, Holland IB, Campbell AK: Direct measurement of free Ca2+ shows different regulation of Ca2+ between the periplasm and the cytosol of Escherichia coli. Cell Calcium 2002, 32:183-192.
- [50]Gangola P, Rosen BP: Maintenance of intracellular calcium in Escherichia coli. J Biol Chem 1987, 262:12570-12574.
- [51]Tisa LS, Adler J: Cytoplasmic free-Ca2+ level rises with repellents and falls with attractants in Escherichia coli chemotaxis. P Natl Acad Sci USA 1995, 92:10777-10781.
- [52]Watkins NJ, Knight MR, Trewavas AJ, Campbell AK: Free calcium transients in chemotactic and non-chemotactic strains of Escherichia coli determined using recombinant aequorin. Biochem J 1995, 306:865-869.
- [53]Carafoli E, Santella L, Branca D, Brini M: Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 2001, 36:107-260.
- [54]Dominguez DC: Calcium signaling in bacteria. Mol Microbiol 2004, 54:291-297.
- [55]Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI: Calcium signaling in bacteria. J Bacteriol 1996, 178:3677-3682.
- [56]Park E, Rapoport TA: Preserving the membrane barrier for small molecules during bacterial protein translocation. Nature 2011, 473:239-242.
- [57]Matsushita TH, Hirata I, Kusaka L: Calcium channels in bacteria. Ann N Y Acad Sci 1989, 560:426-429.
- [58]Shemarova IV, Nesterov VP: Evolution of mechanisms of Ca2+-signaling: role of calcium ions in signal transduction in prokaryotes. J Evol Biochem Phys 2005, 41:12-19.
- [59]Shemarova IV, Nesterov VP: Ca2+ signaling in prokaryotes. Microbiology 2014, 83:431-437.
- [60]Martinac B, Saimi Y, Kung C: Ion channels in microbes. Physiol Rev 2008, 88:1449-1490.
- [61]Kublaski A, Martinac BE: Bacterial ion channels and their eukaryotic homologs. Washington, D.C.: ASM Press; 2005.
- [62]Koprowski P, Kubalski A: Bacterial ion channels and their eukaryotic homologues. Bio Essays 2001, 23:1148-1158.
- [63]Payandeh J, Scheuer T, Zheng N, Catterall WA: The crystal structure of voltage-gated sodium channel. Nature 2011, 475:353-357.
- [64]Payandeh J, El-Din TM, Scheuer T, Zheng N, Catterall WA: Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature 2012, 486:135-139.
- [65]Zhang X, Ren W, DeCaen P, Yan C, Tao XTL, Wang J, Hasegawa K, Kumasaka T, He J, Wang J, Clapham D, Yan N: Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature 2012, 486:130-134.
- [66]Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R: X-ray structure of a voltage-dependent K+ channel. Nature 2003, 423:33-41.
- [67]Sigworth FJ: Life’s transistors. Nature 2003, 423:21-22.
- [68]Doyle DA, Cabral JM, Pfuetzner RA, Juo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998, 280:69-77.
- [69]Kralj JM, Hochbaum DR, Douglass AD, Cohen AE: Electrical spiking in Escherichia coli probed with a fluoresecent voltage-indicating protein. Science 2011, 333:345-348.
- [70]Eisenbach M: Changes in membrance potential of Escherichia coli in response to temporal gradients of chemicals. Biochemistry (Mosc) 1982, 21:6818-6825.
- [71]Shabala L, Bowman J, Brown J, Ross T, McMeekin T, Shabala S: Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmotica. Environ Microbiol 2009, 11:137-148.
- [72]Brown II, Galperin MY, Glagolev AV, Skulachev VP: Utilization of energy stored in the form of Na+. Eur J Biochem 1983, 134:345-349.
- [73]Miller JB, Koshland DE: Sensory electrophysiology of bacteria - relationship of membrane potential to motility and chemotaxis in Bacillus subtilis. P Natl Acad Sci USA 1977, 74:4752-4756.
- [74]Sparling R, Holth LT, Lin Z: Sodium ion dependent active tranport of leucine in Methanosphaera stadtmanae. Can J Microbiol 1993, 39:749-753.
- [75]Strahl H, Hamoen LW: Membrane potential is important for bacterial cell division. P Natl Acad Sci USA 2010, 107:12281-12286.
- [76]Drapeau GR, Matula TI, MacLeod RA: Nutrition and metabolism of marine bacteria. XII. Ion activation of adenosine triphosphatase in membranes of marine bacterial cells. J Bacteriol 1966, 92:63-71.
- [77]Droniuk R, Wong PTS, Wisse G, MacLeod RA: Variation in quantitative requirements for Na+ for transport of metabolizable compounds by the marine bacteria Alteromonas haloplanktis 214 and Vibrio fischeri. Appl Environ Microbiol 1987, 53:1487-1495.
- [78]MacLeod RA, Claridge CA, Hori A, Murray JF: Observations on the function of sodium in the metabolism of a marine bacterium. J Biol Chem 1958, 232:829-833.
- [79]Unemoto T, Hayashi M: Sodium-transport NADH-quinone reductase of a marine Vibrio alginolyticus. J Bioenerg Biomembr 1989, 21:649-659.
- [80]Webb CD, Payne WJ: Influence of Na+ on synthesis of macromolecules by a marine bacterium. Appl Microbiol 1971, 21:1080-1088.
- [81]Wisse G, MacLeod RA: Role of Na+ in growth, respiration and membrane transport in the marine bacterium Pseudomonas doudoroffii 70. Arch Microbiol 1989, 153:64-71.
- [82]Wong PTS, Thompson J, MacLeod RA: Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of α-aminoisobutyric acid and its relation to Na+-dependent transport in a marine pseudomonad. J Biol Chem 1998, 244:1016-1025.
- [83]Griffiths RP, Morita RY: Salinity effects on glucose uptake and catabolism in the obligately psychrophilic marine bacterium Vibrio marinus. Mar Biol 1973, 23:177-182.
- [84]Hayasaka SS, Morita RY: Na+, K+, and nonspecific solute requirements for induction and function of galactose active transport in an Antartic psychrophilic marine bacterium. Appl Environ Microbiol 1979, 37:1166-1172.
- [85]Thompson J, MacLeod RA: Functions of Na+ and K+ in the active transport of α-aminoisobutyric acid in a marine pseudomonad. J Biol Chem 1971, 246:4066-4074.
- [86]MacLeod RA, Goodbody M, Thompson J: Osmotic effects on membrane permeability in a marine bacterium. J Bacteriol 1978, 133:1135-1143.
- [87]Daiku K, Fujita Y, Ezura Y, Sakai M: Physiological studies on the inorganic salt requirements of marine bacteria. II. Effects of the inorganic salts on the oxidations of succinic acid and of fumaric acid. B Jpn Soc Sci Fish 1975, 42:315-322.
- [88]Daiku K, Sakai M: Physiological studies on the inorganic salt requirements of marine bacteria. VII. Salt requirements for cytochromes in the cytoplasmic membrane. B Jpn Soc Sci Fish 1976, 42:1357-1364.
- [89]Daiku K, Sakai M: Physiological studies on the inorganic salt requirements of marine bacteria. IX. Roles of the inorganic cations in the incorporation of 14C-succinic acid, 14C-alanine, and 14C-glucose into cells. B Jpn Soc Sci Fish 1977, 43:743-753.
- [90]Payne WJ: Studies on bacterial utilization of uronic acids. III. Induction of oxidative enzymes in a marine isolate. J Bacteriol 1958, 76:301-307.
- [91]Lane N: Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 2011, 6:35-65.
- [92]de Duve C: The origin of eukaryotes: a reappraisal. Nat Rev Genet 2007, 8:395-403.
- [93]Poole AM, Penny D: Evaluating hypothesis for the origin of eukaryotes. Bioessays 2007, 29:74-84.
- [94]Poole AM, Neumann N: Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 2011, 162:71-76.
- [95]Lodé T: For quite a few chromosomes more: the origin of eukaryotes. J Mol Biol 2012, 423:135-142.
- [96]Martijn J, Ettema TJG: From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc T 2013, 41:451-457.
- [97]Cavalier-Smith T: The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 2002, 52:297-354.
- [98]Cavalier-Smith T: Predation and eukaryote cell origins: a coevolutonary perspective. Int J Biochem Cell Biol 2009, 41:307-322.
- [99]Doolittle WF: You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 1998, 14:307-311.
- [100]Hartman H, Fedorov A: The origin of the eukaryotic cell: a genomic investigation. P Natl Acad Sci USA 2002, 99:1420-1425.
- [101]Poole A, Penny D: Engulfed by speculation. Nature 2007, 447:913.
- [102]Davidov Y, Jurkevitch E: Predation between prokaryotes and the origin of eukaryotes. Bioessays 2009, 31:748-757.
- [103]Vellai T, Vida G: The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc R Soc Lond B Biol Sci 1999, 266:1571-1577.
- [104]Jekely G: Small GTPases and the evolution of the eukaryotic cell. Bioessays 2003, 25:1129-1138.
- [105]Dacks JB, Poon PP, Field MC: Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. P Natl Acad Sci USA 2008, 105:588-593.
- [106]Martin MO: Predatory prokaryotes: an emerging research opportunity. J Mol Microb Biotech 2002, 4:467-477.
- [107]Davidov Y, Huchon D, Koval SF, Jurkevitch E: A new α-proteobacterial clade for Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol 2009, 8:2179-2188.
- [108]Guerrero R, Pedrós-Alió C, Esteve I, Mas J, Chase D, Margulis L: Predatory prokaryotes: predation and primary consumption evolved in bacteria. P Natl Acad Sci USA 1986, 83:2138-2142.
- [109]Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO: A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 2002, 417:63-67.
- [110]Kono M, Koga R, Shimada M, Fukatsu T: Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 2008, 74:4175-4184.
- [111]McCutcheon JP, von Dohlen CD: An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol 2011, 21:1366-1372.
- [112]Thao ML, Gullan PJ, Baumann P: Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 2002, 68:3190-3097.
- [113]von Dohlen CD, Kohler S, Alsop ST, McManus WR: Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 2001, 412:433-435.
- [114]Yamaguchi M, Mori Y, Kozuka Y, Okada H, Uematsu K, Tame A, Furukawa H, Maruyama T, Worman CO, Yokoyama K: Prokaryote or eukaryote? A unique microorganism from the deep sea. J Electron Microsc (Tokyo) 2012, 61:423-431.
- [115]López-García P, Moreira D: Selective forces for the origin of the eukaryotic nucleus. Bio Essays 2006, 28:525-533.
- [116]Martin W, Müller M: The hydrogen hypothesis for the first eukaryote. Nature 1998, 392:37-42.
- [117]Moreira D, López-García P: Symbiosis between methanogenic archaea and δΔ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J Mol Evol 1998, 47:517-530.
- [118]Searcy DG: Metabolic integration during the evolutionary origin of mitochondria. Cell Res 2003, 13:229-238.
- [119]Martin W, Russell MJ: On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 2003, 358:59-85.
- [120]López-García P, Moreira D: Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 1999, 24:88-93.
- [121]Molenaar D, Van Berlo R, de Ridder D, Teusink B: Shifts in growth strategies reflect tradeoffs in cellular economics. Mol Sys Biol 2009, 5:323.
- [122]Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA: Overflow metabolism in Esherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio. Appl Environ Microbiol 2006, 72:3653-3661.
- [123]Zhuang K, Vemuri GN, Mahadevan R: Economics of membrane occupancy and respiro-fermentation. Mol Sys Biol 2011, 7:500.
- [124]Sonenshein AL: Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol 2007, 5:917-927.
- [125]Thauer RK, Jungerman K, Decker K: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 1977, 41:100-178.
- [126]Johnston DT, Wolfe-Simon F, Knoll AH: Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. P Natl Acad Sci USA 2009, 106:16925-16929.
- [127]Johnston DT, Poulton SW, Dehler C, Porter S, Husson J, Knoll AH: An emerging picture of Neoproterozoic ocean chemistry: insights from the Chuar Group, Grand Canyon, USA. Earth Planet Sc Lett 2010, 290:64-73.
- [128]Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K: Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 2003, 55:193-204.
- [129]Lane N, Martin W: The energetics of genome complexity. Nature 2010, 467:929-934.
- [130]Hamann CH, Hamnett A, Vielstich W: Electrochemistry. 2nd edition. Wiley: Weinheim; 2007.
- [131]von Ballmoos C, Wiedenmann A, Dimroth P: Essentials for ATP synthesis by F1F0 ATP synthesis. Annu Rev Biochem 2009, 78:649-672.
- [132]Stewart PS: Diffusion in biofilms. J Bacteriol 2003, 185:1485-1491.
- [133]Booth IR: Regulation of cytoplasmic pH in bacteria. Microbiol Rev 1985, 49:359-378.
- [134]Pytkowicz RM, Atlas E: Buffering intensity of seawater. Limnol Oceanogr 1975, 20:222-229.
- [135]Robinson RW, Akin DE, Nordstedt RA, Thomas MV, Aldrich HC: Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl Environ Microbiol 1984, 48:127-136.
- [136]Watson ML: Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cy 1959, 6:147-156.
- [137]Watson ML: The nuclear envelope: its structure and relation to cytoplasmic membranes. J Biophys Biochem Cy 1955, 1:257-270.
- [138]Moor H, Mühlethaler K: Fine structure in frozen-etched yeast cells. J Cell Biol 1963, 17:609-628.
- [139]Mulkidjanian AY, Dibrov P, Galperin MY: The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 2008, 1777:985-992.
- [140]Cherepanov DA, Mulkidjanian AY, Junge W: Transient accumulation of elastic energy in proton translocating ATP synthesis. FEBS Lett 1999, 449:1-6.
- [141]Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Ashiya M, Mannella CA, Korsemeyer SJ: A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2002, 2:55-67.
- [142]Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W: Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 2008, 27:1154-1160.
- [143]Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kühlbrandt W: Macromolecular organization of ATP synthase and complex I in whole mitochondria. P Natl Acad Sci USA 2011, 108:14121-14126.
- [144]Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M: pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 2005, 326:799-804.
- [145]Colombini M: A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 1979, 279:643-645.
- [146]Mannella C, Bonner WD: X-ray diffraction from oriented outer mitochondrial membranes. Detection of in-plane subunit structure. Biochim Biophys Acta 1973, 413:226P-233P.
- [147]Embley TM, van der Giezen M, Horner DS, Dyal PLBS, Foster PG: Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 2003, 55:387-395.
- [148]Embley TM, Martin W: Eukaryotic evolution, changes and challenges. Nature 2006, 440:623-630.
- [149]van der Giezen M: Mitochondria and the rise of eukaryotes. Bioscience 2011, 61:594-601.
- [150]Hackstein JHP, Tjaden J, Huynen M: Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 2006, 50:225-245.
- [151]Martin W, Koonin EV: Introns and origin of the nucleus-cytosol compartmentalization. Nature 2006, 440:41-45.
- [152]Koonin EV: The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006, 1:22.
- [153]Poole AM: Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol Direct 2006, 1:10.
- [154]Rogozin IB, Carmel L, Csuros M, Koonin EV: Origin and evolution of spliceosomal introns. Biol Direct 2012, 7:11. doi:10.1186/1745-6150-7-11
- [155]Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolittle WF: Irremediable complexity? Science 2010, 330:920-921.
- [156]Mans BJ, Anatharaman V, Aravind L, Koonin EV: Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 2004, 3:1612-1637.
- [157]Waters CM, Bassler BL: Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 2005, 21:319-349.
- [158]Horiike T, Hamada K, Kanaya S, Shinozawa T: Origin of eukarytoic cell nuclei by symbosis of Archaea in Bacteria is revealed by homology-hit analysis. Nature Cell Biol 2001, 3:210-214.
- [159]Rivera MC, Lake JA: The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 2004, 431:152-155.
- [160]Gribaldo S, Poole AM, Daubin V, Forterre PB-AC: The origin of eukaryotes and their relationship with the Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 2010, 8:743-752.
- [161]Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV: The deep archaeal roots of eukaryotes. Mol Biol Evol 2008, 25:1619-1630.
- [162]Wickstead B, Gull K: The evolution of the cytoskeleton. J Cell Biol 2011, 194:513-525.
- [163]Lake JA: Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 1988, 331:184-186.
- [164]Horiike T, Hamada K, Miyata D, Shinozawa T: The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-proteobacteria by phylogenetic tree based on gene content. J Mol Evol 2004, 59:606-619.
- [165]Ohyanagi H, Ikeo K, Gojobori T: The origin of nucleus: rebuild from the prokaryotic ancestors of ribosome export factors. Gene 2008, 423:149-152.
- [166]Bapteste E, O’Mallery MA, Beiko RG, Ereshefshy M, Gogarten JP, Franklin-Hall L, Lapointe F, Dupre JDT, Boucher Y, Martin W: Prokaryotic evolution and the tree of life are two different things. Biol Direct 2009, 4:34.
- [167]Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J: Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 2008, 62:375-401.
- [168]Popa O, Dagan T: Trends and barriers to lateral gene transfer in prokaryotes. Curr Opin Microbiol 2011, 14:615-623.
- [169]Timmis JN, Ayliffe MA, Huang CY, Martin W: Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004, 5:123-136.
- [170]Nelson-Sathi S, Dagan T, Landan G, Janssen A, Steel M, McInerney JO, Deppenmeier U, Martin WF: Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea. P Natl Acad Sci USA 2012, 109:20537-20542.
- [171]Kloesges T, Popa O, Martin W, Dagan T: Networks of gene sharing among 329 proteobacterial genomes reveal differences in lateral gene transfer frequency at different phylogenetic depths. Mol Biol Evol 2011, 28:1057-1074.
- [172]Dagan T, Martin W: The tree of one percent. Genome Biol 2006, 7:118.
- [173]Martin W: Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 2005, 8:630-637.
- [174]Martin W: A briefly argued case that mitochondria and plastids are descendents of endosymbionts, but that the nuclear compartment is not. Proc R Soc Lond B Biol Sci 1999, 266:1387-1395.
- [175]Fichtman B, Ramos C, Rasala B, Harel A, Forbes DJ: Inner/outer nuclear membrane fusion in nuclear pore assembly. Mol Biol Cell 2010, 21:4197-4211.
- [176]Scheer U, Dabauvalle M, Krohne G, Zahedi RP, Sickmann A: Nuclear envelopes from amphibian ooctes – from morphology to protein inventory. Eur J Cell Biol 2004, 84:151-162.
- [177]Mazzanti M, Defelice LJ, Cohen J, Malter H: Ion channels in the nuclear envelope. Nature 1990, 343:764-767.
- [178]Afzelius BA: The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res 1955, 8:147-158.
- [179]Field MC, Sali A, Rout MP: On a bender – BARs, ESCRTs, COPs, and finally getting your coat. J Cell Biol 2011, 193:963-972.
- [180]Mulkidjanian AY, Galperin M, Koonin EV: Co-evolution of primordial membranes and membrane proteins. Trends Biochem Sci 2009, 34:206-215.
- [181]Postberg J, Lipps HJ, Cremer T: Evolutionary origin of the cell nucleus and its functional architecture. Essays Biochem 2010, 48:1-24.
- [182]de Roos ADG: The origin of the eukaryotic cell based on conservation of existing interfaces. Artif Life 2006, 12:513-523.
- [183]Jékely G: Small GTPases and the evolution of the eukaryotic cell. Bioessays 2003, 25:1129-1138.
- [184]Cavalier-Smith T: Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 2010, 5:7. doi:10.1186/1745-6150-5-7
- [185]Fuerst JA: Intracellular compartmentation in Planctomycetes. Annu Rev Microbiol 2005, 59:299-328.
- [186]Bapteste E, Charlebois RL, MacLeod D, Brochier C: The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol 2005, 6:R85.
- [187]Field MC, Dacks JB: First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 2009, 21:4-13.
- [188]Neumann N, Lundin D, Poole AM: Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS ONE 2010, 5:e13241.
- [189]Wilson KL, Dawson SC: Functional evolution of nuclear structure. J Cell Biol 2011, 195:171-181.
- [190]Horiike T, Hamada K, Shinozawa T: Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria supported by the newly clarified origin of functional genes. Genes Genet Syst 2002, 77:369-376.
- [191]Lake JA, Rivera MC: Was the nucleus the first endosymbiont? P Natl Acad Sci USA 1994, 91:2880-2881.
- [192]Doolittle RF: Searching for the common ancestor. Res Microbiol 2000, 151:85-89.
- [193]Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Steter KO, Rachel R, Huber H: Nanoarachaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 2008, 190:1743-1750.
- [194]Dubey GP, Ben-Yehuda S: Intercellular nanotubes mediate bacterial communication. Cell 2011, 144:590-600.
- [195]Konovalova A, Segaard-Anderson L: Close encounters: contact-dependent interactions in bacteria. Mol Microbiol 2011, 81:297-301.
- [196]Sanchez C: Bacterial networking. Nat Rev Microbiol 2011, 9:29.
- [197]Marguet E, Gaudin M, Gauliard E, Fourquaux I, du Plouy SB, Matsui I, Forterre P: Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. Biochem Soc T 2013, 41:436-442.
- [198]de Souza W: Prokaryotic cells: structural organisation of the cytoskeleton and organelles. Mem Inst Oswaldo Cruz 2012, 107:283-293.
- [199]Lovley DR: Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 2011, 10:101-105.
- [200]Schertzer JW, Whiteley M: Microbial communication superhighways. Cell 2011, 144:469-470.
- [201]Domingue GJ, Woody HB: Bacterial persistence and expression of disease. Clin Microbiol Rev 1997, 10:320-344.
- [202]Errington J: L-form bacteria, cell walls and the origins of life. Open Biol 2012, 3:120-1143.
- [203]Ml L, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J: Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457:849-853.
- [204]Dunne WM: Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002, 15:155-166.
- [205]Dworkin M: Recent advances in the social and development biology of the Myxobacteria. Microbiol Rev 1996, 60:70-102.
- [206]Hall-Stoodley L, Costerton JW, Stoodley P: Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004, 2:95-108.
- [207]Junglas B, Briegel A, Burghardt T, Walther P, Wirth R, Huber H, Rachel R: Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography. Arch Microbiol 2008, 190:395-408.
- [208]Orell A, Frols S, Albers S: Archaea biofilms: the great unexplored. Annu Rev Microbiol 2013, 67:337-354.
- [209]Wrede C, Dreier A, Kokoschka S, Hoppert M: Archaea in symbioses. Archaea 2012, 2012:596846.
- [210]Carpentier B, Cerf O: Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol 1993, 75:499-511.
- [211]Davey ME, O’Toole GA: Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000, 64:847-867.
- [212]Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G: Biofilms, the customized microniche. J Bacteriol 1994, 176:2137-2142.
- [213]Costerton JW, Lewandowski Z: Microbial biofilms. Annual Rev Microbiol 1995, 49:711-745.
- [214]Pohlschröder M, Prinz WA, Hartmann E, Beckwith J: Protein translocation in the three domains of life: variations on a theme. Cell 1997, 91:563-566.
- [215]Yuan J, Zweers JC, van Dijl JM, Dalbey RE: Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 2010, 67:179-199.
- [216]Hutcheon GW, Bolhuis A: The archaeal twin-arginine translocation pathway. Biochem Soc T 2014, 31:686-689.
- [217]Karlberg O, Canbäck B, Kurland CG, Andersson SGE: The dual origin of the yeast mitochondrial proteome. Yeast 2000, 17:170-187.
- [218]Tjaden J, Haferkamp I, Boma B, Tielens AGM, Huynen M, Hackstein HP: A divergent ADP/ATP carrier in the hydrogenosomes of Tricomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 2004, 51:1439-1446.
- [219]Andersson SGE, Kurland CG: Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 1999, 2:535-541.
- [220]Gabaldón T, Huynen MA: Reconstruction of the proto-mitochondrial metabolism. Science 2003, 301:609.
- [221]Gabaldón T, Huynen MA: From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput Biol 2007, 3:e219.
- [222]Gabaldón T, Huyen MA: Shaping the mitochondrial proteome. Biochim Biophys Acta 2004, 1659:212-220.
- [223]Kurland CG, Andersson SGE: Origin and evolution of the mitochondrial proteome. Microbology Mol Biol Rev 2000, 64:786-820.
- [224]Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plümper E, Leuenberger D, Turck CW, Johnson PJ: Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 2000, 20:2488-2497.
- [225]Winkler HH, Neuhaus HE: Non-mitochondrial ATP transport. Trends Biochem Sci 1999, 24:64-68.
- [226]Katinka MD, Duprat S, Cornillot E, Méténier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Sourin W, Gouy M, Weissenbach J, Vivarès CP: Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 2001, 414:450-453.
- [227]Alexeyev MF, Winkler HH: Gene synthesis, bacterial expression and purification of the Rickettsia prowazekii ATP/ADP translocase. Biochim Biophys Acta 1999, 1419:299-306.
- [228]Amiri H, Karlberg O, Anderson SGE: Deep origin of plastic/parasite ATP/ADP translocases. J Mol Evol 2002, 56:137-150.
- [229]Audia JP, Winkler HH: Study of the five Rickettsia prowazekii proteins annotated as ATP/ADP translocases (Tlc): only Tlc1 transports ATP/ADP, while Tlc4 and Tlc5 transport other ribonucleotides. J Bacteriol 2006, 188:6261-6268.
- [230]Daugherty RM, Linka N, Audia JP, Urbany C, Neuhaus HE, Winkler HH: The nucleotide transporter of Caedibacter caryophilus exhibits an extended substrate spectrum compared to the analogous ATP/ADP translocase of Rickettsia prowazekii. J Bacteriol 2004, 186:3262-3265.
- [231]Fisher DJ, Fernandez RE, Maurelli AT: Chlamydia trachomatis transports NAD via the Npt1 ATP/ADP translocase. J Bacteriol 2013, 195:3381-3386.
- [232]Hatch TP, Al-Hossainy E, Silverman JA: Adenine nucleotide and lysine transport in Chlamydia psittacti. J Bacteriol 1982, 150:662-670.
- [233]Schmitz-Esser S, Linka N, Collingro A, Baier CL, Neuhaus HE, Wagner M, Horn M: ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. J Bacteriol 2004, 2003:683-691.
- [234]Schmitz-Esser S, Haferkamp I, Knab S, Penz T, Ast M, Koh C, Wan ger M, Horn M: Lawsonia intracellularis contains a gene encoding a functional rickettsia-like ATP/ADP translocase for host exploitation. J Bacteriol 2008, 190:5746-5752.
- [235]Winkler HH: Rickettsial permeability. An ADP-ATP transport system. J Biol Chem 1976, 251:389-396.
- [236]Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson A-S, Winkler HH, Kurland CG: The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 1998, 396:133-140.
- [237]Celis RT: Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur J Biochem 1984, 145:403-411.
- [238]Celis RT: Mutant of Escherichia coli K-12 with defective phosphorylation of two periplasmic transport proteins. J Biol Chem 1990, 265:1787-1793.
- [239]Urban C, Celis RT: Purification and properties of a kinase from Escherichia coli K-12 that phosphorylates two periplasmic transport proteins. J Biol Chem 1990, 265:1783-1786.
- [240]Beacham IR: Periplasmic enzymes in Gram-negative bacteria. Int J Biochem 1979, 10:877-833.
- [241]Benveniste R, Yamada T, Davies J: Enzymatic adenylylation of streptomycin and spectinomycin by R-factor-resistant Escherichia coli. Infect Immun 1970, 1969:109-119.
- [242]Chopra I: Mechanisms of resistance to antibiotics and other chemotherapeutic agents. J Appl Bacteriol Symp Suppl 1988, 149S-166S.
- [243]Harwood JH, Smith DH: Resistance factor-mediated streptomycin resistance. J Bacteriol 1969, 97:1262-1271.
- [244]Lundbäck AK, Nordström K: Mutations in Escherichia coli K-12 decreasing the rate of streptomycin uptake: synergism with R-factor-mediated capacity to inactivate streptomycin. Antimicrob Agents Chemother 1974, 1974:500-507.
- [245]Yamada T, Tipper D, Davies J: Enzymatic inactivation of streptomycin by R factor-resistant Escherichia coli. Nature 1968, 219:288-291.
- [246]Wülfing C, Plückthun A: Protein folding in the periplasm of Escherichia coli. Mol Microbiol 1994, 12:685-692.
- [247]Justice SS, Hunstad DA, Harper JR, Duguay AR, Pinkner JS, Bann J, Frieden C, Silhavy TJ, Hultgren SJ: Periplasmic peptidyl prolyl cis-trans isomerases are not essential for viability, but SurA is required for pilus biogenesis in Escherichia coli. J Bacteriol 2005, 187:7680-7686.
- [248]Miot M, Betton J: Protein quality control in the bacterial periplasm. Microbology Mol Biol Rev 2004, 3:4.
- [249]Lichtenstein J, Barner HD, Cohen SS: The metabolism of exogenously supplied nucleotides by Escherichia coli. J Biol Chem 1960, 235:457-465.
- [250]Goto S, Chuman H, Majima E, Terada H: How does the mitochondrial ADP/ATP carrier distinguish transportable ATP and ADP from untransportable AMP and GTP? Dynamic modeling of the recognition/translocation process in the major substrate binding region. Biochim Biophys Acta 2002, 1589:203-218.
- [251]Küper U, Meyer C, Müler R, Huber H: Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeon Ignicoccus hospitalis. P Natl Acad Sci USA 2010, 107:3152-3156.
- [252]McCutcheon JP, Moran NA: Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 2012, 10:13-26.
- [253]Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA: Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology 2006, 4:1079-1092.
- [254]Heilmann C, Gerke C, Perdreau-Remington F, Götz F: Characterization of Tn917 insertion mutants of Staphylococcus epidermidis affected in biofilm formation. Infect Immun 1996, 64:277-282.
- [255]Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Götz F: Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 1996, 20:1083-1091.
- [256]Mack D, Nedelmann M, Krokotsch A, Schwarzkopf A, Heesemann J, Laufs R: Characterization of transposon mutants of biofilm-producing Staphylococcus epidermidis impaired in the accumulative phase of biofilm production: genetic identification of a hexosamine-containing polysaccharide intercellular adhesin. Infect Immun 1994, 62:3244-3253.
- [257]Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R: The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear b-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 1996, 178:175-183.
- [258]Absalon C, Van Dellen K, Watnick PI: A communal bacterial adhesion anchors biofilm and bystander cells to surfaces. PLoS Pathogens 2011, 7:e1002210.
- [259]Maeste-Reyna M, Wu W-J, Wang AHJ: Structural insights into RbmA, a biofilm scaffolding protein of V. cholerae. PLoS ONE 2013, 8:e0082458.
- [260]Sugimoto S, Iwamoto T, Takada K, Okuda K, Iwase T, Mizunoe Y: Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 2013, 195:1645-1655.
- [261]Foster TJ, Geoghegan JA, Ganesh VK, Höök M: Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014, 12:49-62.
- [262]Liang X, Chen Y-YM, Ruiz T, Wu H: New cell surface protein involved in biofilm formation by Streptococcus parasanguinis. Infect Immun 2011, 79:3239-3248.
- [263]Romero D, Vlamakis H, Losick R, Kolter R: An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. Mol Microbiol 2011, 80:1155-1168.
- [264]Lévesque CM, Voronejskaia E, Huang Y-CC, Mair RW, Ellen RP, Cvitkovitch DG: Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect Immun 2005, 73:3773-3777.
- [265]Keller L, Surette MG: Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 2006, 4:249-258.
- [266]Rendueles O, Ghigo J: Multi-species biolfilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2011, 36:972-989.
- [267]Taga ME, Bassler BL: Chemical communication among bacteria. P Natl Acad Sci USA 2003, 100:14549-14554.
- [268]Darland G, Brock TD, Samsonoff W, Conti SF: A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 1970, 170:1416-1418.
- [269]Golyshina OV, Pivovarova TA, Karavaiko GI, Kondratéva TF, Moore ER, Abraham WR, Lünsdorf H, Timmis KN, Yakimov MM, Golyshin PN: Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int J Syst Evol Microbiol 2000, 50:997-1006.
- [270]Rachel R, Wyschkony I, Riehl S, Huber H: The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 2002, 1:9-18.
- [271]Lombard J, López-García P, Moreira D: The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 2012, 10:507-515.
- [272]Kato S, Takano Y, Kakegawa T, Oha H, Inoue K, Kobayashi C, Utsumi M, Marumo K, Kobayashi K, Ito Y, Ishibashi J, Yamagishi A: Biogeography and biodiversity in sulfide structures of active and inactive vents at deep-sea hydrothermal fields of the Southern Mariana trough. Appl Environ Microbiol 2010, 76:2968-2979.
- [273]Sylvan JB, Toner BM, Edwards KJ: Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. Mbio 2012, 3:e00279-11.
- [274]Chambers VC, Weiser RS: Annulate lamellae in sarcoma I cells. J Cell Biol 1964, 21:133-139.
- [275]Hoage TR, Kessel RG: An electron microscope study of the process of differentiation during spermatogenesis in the drone honey bee (Apis mellifera L.) with special reference to centriole replication and elimination. J Ultrastruct Res 1968, 24:6-32.
- [276]Kessel RG, Katow H: Effects of prolonged antitubulin culture on annulate lamellae in mouse a L929 fibroblasts. J Morphol 1984, 179:291-304.
- [277]Kessel RG: Electron microscope studies on oocytes of an echinoderm, Thyone briareus, with special reference to the origin and structure of the annulate lamellae. J Ultrastruct Res 1964, 10:498-514.
- [278]Kessel RG: Fibrogranular bodies, annulate lamellae, and polyribosomes in the dragonfly oocyte. J Morphol 1983, 176:171-180.
- [279]Krishan A, Hsu D, Hutchins P: Hypertrophy of granular endoplasmic reticulum and annulate lamellae in Earl’s I cells exposed to vinblastine sulfate. J Cell Biol 1968, 39:211-216.
- [280]Swift H: The fine structure of annulate lamellae. J Biophys Biochem Cy 1956, 2:415-418.
- [281]Kessel RG: Annulate lamellae: a last frontier in cellular organelles. Int Rev Cytol 1992, 133:43-112.
- [282]Carrasco S, Meyer T: STIM proteins and the endoplasmic reticulum-plasma membrane junctions. Annu Rev Biochem 2011, 80:973-1000.
- [283]Voeltz GK, Rolls MM, Rapoport TA: Structural organization of the endoplasmic reticulum. EMBO Rep 2002, 3:944-950.
- [284]Levine T, Loewen L: Inter-organelle membrane contact sites: through a glass, darkly. Curr Opin Cell Biol 2006, 18:371-378.
- [285]Porter KR, Palade GE: Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cy 1957, 3:269-300.
- [286]Rosenbluth J: The fine structure of acoustic ganglia in the rat. J Cell Biol 1962, 12:329-359.
- [287]Schulz TA, Choi M-G, Raychaudhuri S, Mears JA, Ghirlando R, Hinshaw JE, Prinz WA: Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol 2009, 187:889-903.
- [288]Prinz WA, Grzyb L, Veenhuis M, Kahana JA, Silver PA, Rapoport TA: Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 2000, 150:461-474.
- [289]Henkart M, Landis DM, Reese TS: Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 1976, 70:338-347.
- [290]Wu MM, Buchanan J, Luik RM, Lewis RS: Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J Cell Biol 2006, 174:803-813.
- [291]Levine T, Rabouille C: Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 2005, 17:362-368.
- [292]West M, Zurek N, Hoenger A, Voeltz GK: A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J Cell Biol 2011, 193:333-346.
- [293]Elbaz Y, Schuldiner M: Staying in touch: the molecular era of organelle contact sites. Trends Biochem Sci 2011, 36:616-623.
- [294]Baba M, Osumi M: Transmission and scanning electron microscopic examination of intracellular organelles in freeze-substituted Kloeckera and Saccharomyces cerevisiae yeast cells. J Embryol Exp Morphol 1987, 5:249-261.
- [295]Koning AJ, Lum PY, Williams JM, Wright R: DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 1993, 25:111-128.
- [296]Flucher BE: Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol 1992, 154:245-260.
- [297]Franzini-Armstrong C, Jorgensen AO: Structure and development of E-C coupling units in skeletal muscle. Annu Rev Physiol 1994, 56:509-534.
- [298]Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, Zellnig G, Perktold A, Daum G: A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur J Biochem 2001, 268:2351-2361.
- [299]Csala M, Banhegyi G, Benedetti A: Endoplasmic reticulum: a metabolic compartment. FEBS Lett 2006, 580:2160-2165.
- [300]Garner MH: Na, K-ATPase in the nuclear envelope regulates Na+:K+ gradients in hepatocyte nuclei. J Membr Biol 2002, 187:97-115.
- [301]Rapoport TA: Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007, 450:663-669.
- [302]Vitale A, Denecke J: The endoplasmic reticulum–gateway of the secretory pathway. Plant Cell 1999, 11:615-628.
- [303]Bygrave FL, Benedetti A: What is the concentration of calcium ions in the endoplasmic reticulum? Cell Calcium 1996, 19:547-551.
- [304]Fedorenko E, Marchenko S: Importance of cationic channels for functioning of the nuclear envelope of neurons as a calcium store. Neurophysiology 2011, 42:233-238.
- [305]Galva C, Artigas P, Gatto C: Nuclear Na+/K+-ATPase plays an active role in nucleoplasmic Ca2+ homeostasis. J Cell Sci 2012, 125:6137-6146.
- [306]Chen Y, Sanchez A, Rubio ME, Kohl T, Pardo LA, Stuhmer W: Functional K(v)10.1 channels localize to the inner nuclear membrane. PLoS ONE 2011, 6:e19257.
- [307]Guihard G, Proteau S, Payet MD, Escande D, Rousseau E: Patch-clamp study of liver nuclear ionic channels reconstituted into giant proteoliposomes. FEBS Lett 2000, 476:234-239.
- [308]Mazzanti M, Bustamante JO, Oberleithner H: Electrical dimension of the nuclear envelope. Physiol Rev 2001, 81:1-19.
- [309]Durell SR, Guy HR: A putative prokaryote voltage-gated Ca2+ channel with only one 6TM motif per subunit. Biochem Biophys Res Commun 2001, 281:741-746.
- [310]Guragain M, Lenaburg DL, Moore FS, Reutlinger I, Patrauchan MA: Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 2013, 54:350-361.
- [311]Holland IB, Jones HE, Campbell AK, Jacq A: An assessment of the role of intracellular free Ca2+ in E. coli. Biochimie 1999, 81:901-907.
- [312]Petit-Glatron M-F, Grajcar L, Munz A, Chambert R: The contribution of the cell wall to a transmembrane calcium gradient could play a key role in Bacillus subtilis protein secretion. Mol Microbiol 1993, 9:1097-1106.
- [313]Tisa LS, Sekelsky JJ, Adler J: Effects of organic antagonists of Ca2+, Na+, and K+ on chemotaxis and motility of Escherichia coli. J Bacteriol 2000, 182:4856-4861.
- [314]Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. Nat Rer Mol Cell Bio 2000, 1:11-21.
- [315]Berridge M, Lipp P, Bootman M: Calcium signalling. Curr Biol 1999, 9:R157-R159.
- [316]Clapham DE: Replenishing the stores. Nature 1995, 375:634-635.
- [317]Leite MF, Thrower EC, Echevarria W, Koulen P, Hirata K, Bennett AM, Ehrlich BE, Nathanson MH: Nuclear and cytosolic calcium are regulated independently. P Natl Acad Sci USA 2003, 100:2975-2980.
- [318]Patel S, Joseph SK, Thomas AP: Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 1999, 25:247-264.
- [319]Taylor CW, Genazzani AA, Morris SA: Expression of inositol trisphosphate receptors. Cell Calcium 1999, 26:237-251.
- [320]Tandler B, Hoppel CL: Possible division of cardiac mitochondria. Anat Rec 1972, 173:309-323.
- [321]Griparic L, van der Bliek M: The many shapes of mitochondrial membranes. Traffic 2001, 2:235-244.
- [322]Ebrahimi H, Cooper JP: Closed mitosis: a timely move before separation. Curr Biol 2012, 22:R880-R882.
- [323]De Souza DPC, Osmani SA: Mitosis, not just open or closed. Eukaryot Cell 2007, 6:1521-1527.
- [324]Gonzalez Y, Meerbrey K, Chong J, Torii Y, Padte NN, Sazer S: Nuclear shape, growth and integrity in the closed mitosis of fission yeast depend on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum. J Cell Sci 2009, 122:2464-2472.
- [325]Güttinger S, Laurell E, Kutay U: Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rer Mol Cell Bio 2009, 10:178-191.
- [326]De Souza DPC, Osmani AH, Hashimi SB, Osmani SA: Partial nucelar pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr Biol 2004, 14:1973-1984.
- [327]Leo M, Santino D, Tikhonenko I, Magidson V, Khodjakov A, Koonce MP: Rules of engagement: centrosome-nuclear connections in a closed mitotic system. Biology Open 2012, 1:1111-1117.
- [328]Kubai DF: The evolution of the mitotic spindle. Int Rev Exp Pathol 1975, 43:167-227.
- [329]Ribeiro KC, Pereira-neves A, Benchimol M: The mitotic spindle and associated membranes in the closed mitosis of trichomonads. Biol Cell 2002, 94:157-172.
- [330]van der Velden HMW, Wanka F: The nuclear matrix–its role in the spatial organization and replication of eukaryotic DNA. Mol Biol Rep 1987, 12:69-77.
- [331]Cohen M, Lee KK, Wislon KL, Gruenbaum Y: Transcriptional repression, apoptosis, human disease, and the functional evolution of the nuclear lamina. Trends Biochem Sci 2001, 26:41-47.
- [332]Heath IB: Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis? Int Rev Cytol 1980, 64:1-79.
- [333]Heywood P: Ultrastructure of mitosis in the chloromonadophycean alga Vacuolaria virescens. J Cell Sci 1978, 31:37-51.
- [334]Hetzer M: The nuclear envelope. Cold Spring Harb Perspect Biol 2010, 2:a000539.
- [335]Johnson RT, Rao PN: Nucleo-cytoplasmic interactions in the achievement of nuclear synchrony in DNA synthesis and mitosis in multinucleate cells. Biol Rev 1971, 46:97-155.
- [336]Jannasch HW, Jones GE: Bacterial populations in seawater as determined by different methods of enumeration. Limnol Oceanogr 1959, 4:128-139.
- [337]Kogure K, Simidu R, Taga N: A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 1979, 25:415-420.
- [338]Jensen PR, Fenical W: Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Ann Rev Microbiol 1994, 48:559-584.
- [339]Munn C: Microbes in the marine environment. In Marine Microbiology. Ecology and Applications. New York, NY: Garland Science; 2011:1-23.
- [340]Pace NR: A molecular view of microbial diversity and the biosphere. Science 1997, 276:734-740.
- [341]Podar M, Anderson I, Makarova KS, Elkins JG, Ivanova N, Wall MA, Lykidis A, Mavromatis K, Sun H, Hudson ME, Chen W, Deciu C, Hutchinson D, Eads JR, Anderson A, Fernandes R, Szeto E, Lapidus A, Kyrpides NC, Saier MH Jr, Richardson PM, Rachel R, Huber H, Eisen JA, Koonin EV, Keller M, Stetter KO: A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 2008, 9:R158.
- [342]Gatehouse LN, Sutherlan P, Forgie SA, Kaji R, Christeller JT: Molecular and histological characterization of pirmary (betaproteobacteria) and secondadry (gammaproteobacteria) endosymbionts of three mealybug speacies. Appl Environ Microbiol 2011, 78:1187-1197.
- [343]Hoffmeister M, Martin W: Interspecific evolution: microbial symbiosis, endosymbiosis and gene transfer. Environ Microbiol 2003, 5:641-649.
- [344]Chan JZM, Halachen MR, Loman NJ, Constantinidou C, Pallen MJ: Defining bacterial species in the genomic era: insights from the genus Acinetobacter. BMC Microbiology 2012, 12:302.
- [345]Cho J-C, Tiedge JM: Bacterial species determination from DNA-DNA hybridization by using genome fragments and DNA microarrays. Appl Environ Microbiol 2001, 67:3677-3682.
- [346]Konstantinidis KT, Ramette A, Tiedje JM: The bacterial species definition in the genomic era. Philos Trans R Soc Lond B 2006, 361:1929-1940.
- [347]Simon M, Azam F: Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Prog Ser 1989, 51:201-213.
PDF