期刊论文详细信息
Biology Direct
Pathway-based classification of cancer subtypes
Shinuk Kim2  Mark Kon3  Charles DeLisi1 
[1] Bioinformatics program, Boston University, 24 Cummington Street, Boston, MA, 02215, USA
[2] Bioinformatics program, Boston University, Boston, MA, 02215, USA
[3] Department of Mathematics and Statistics, Boston University, Boston, MA, 02215, USA
关键词: Gene set enrichment analysis;    Breast cancer;    Ovarian cancer;    Cancer subtypes;    Pathway;    Classification;   
Others  :  796949
DOI  :  10.1186/1745-6150-7-21
 received in 2011-12-08, accepted in 2012-05-15,  发布年份 2012
PDF
【 摘 要 】

Background

Molecular markers based on gene expression profiles have been used in experimental and clinical settings to distinguish cancerous tumors in stage, grade, survival time, metastasis, and drug sensitivity. However, most significant gene markers are unstable (not reproducible) among data sets. We introduce a standardized method for representing cancer markers as 2-level hierarchical feature vectors, with a basic gene level as well as a second level of (more stable) pathway markers, for the purpose of discriminating cancer subtypes. This extends standard gene expression arrays with new pathway-level activation features obtained directly from off-the-shelf gene set enrichment algorithms such as GSEA. Such so-called pathway-based expression arrays are significantly more reproducible across datasets. Such reproducibility will be important for clinical usefulness of genomic markers, and augment currently accepted cancer classification protocols.

Results

The present method produced more stable (reproducible) pathway-based markers for discriminating breast cancer metastasis and ovarian cancer survival time. Between two datasets for breast cancer metastasis, the intersection of standard significant gene biomarkers totaled 7.47% of selected genes, compared to 17.65% using pathway-based markers; the corresponding percentages for ovarian cancer datasets were 20.65% and 33.33% respectively. Three pathways, consisting of Type_1_diabetes mellitus, Cytokine-cytokine_receptor_interaction and Hedgehog_signaling (all previously implicated in cancer), are enriched in both the ovarian long survival and breast non-metastasis groups. In addition, integrating pathway and gene information, we identified five (ID4, ANXA4, CXCL9, MYLK, FBXL7) and six (SQLE, E2F1, PTTG1, TSTA3, BUB1B, MAD2L1) known cancer genes significant for ovarian and breast cancer respectively.

Conclusions

Standardizing the analysis of genomic data in the process of cancer staging, classification and analysis is important as it has implications for both pre-clinical as well as clinical studies. The paradigm of diagnosis and prediction using pathway-based biomarkers as features can be an important part of the process of biomarker-based cancer analysis, and the resulting canonical (clinically reproducible) biomarkers can be important in standardizing genomic data. We expect that identification of such canonical biomarkers will improve clinical utility of high-throughput datasets for diagnostic and prognostic applications.

Reviewers

This article was reviewed by John McDonald (nominated by I. King Jordon), Eugene Koonin, Nathan Bowen (nominated by I. King Jordon), and Ekaterina Kotelnikova (nominated by Mikhail Gelfand).

【 授权许可】

   
2012 Kim et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706021330162.pdf 691KB PDF download
Figure 8. 22KB Image download
Figure 7. 31KB Image download
Figure 6. 17KB Image download
Figure 5. 28KB Image download
Figure 4. 24KB Image download
Figure 3. 37KB Image download
Figure 2. 28KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Crijns APG, Fehrmann RSN, de Jong S, Gerbens F, Meersma GJ, Klip HG, Hollema H, Hofstra RMW, Meerman GJT, de Vries EGE, et al.: Survival-Related Profile, Pathways, and Transcription Factors in Ovarian Cancer. PLoS Med 2009, 6(2):181-193.
  • [2]Dressman HK, Berchuck A, Chan G, Zhai J, Bild A, Sayer R, Cragun J, Clarke J, Whitaker RS, Li LH, et al.: An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 2007, 25(5):517-525.
  • [3]Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J: Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 2005, 365(9460):671-679.
  • [4]van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, et al.: Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-536.
  • [5]Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of breast cancer metastasis. Mol Syst Biol 2007., 3
  • [6]van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347(25):1999-2009.
  • [7]Cary MP, Bader GD, Sander C: Pathway information for systems biology. FEBS Lett 2005, 579(8):1815-1820.
  • [8]Nishimura D: BioCarta. Biotechnol Softw Internet Rep 2001, 2:117-120.
  • [9]Guo Z, Zhang TW, Li X, Wang Q, Xu JZ, Yu H, Zhu J, Wang HY, Wang CG, Topol EJ, et al.: Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 2005., 6(58) BioMed Central Full Text
  • [10]Lee E, Chuang HY, Kim JW, Ideker T, Lee D: Inferring Pathway Activity toward Precise Disease Classification. PLoS Comput Biol 2008., 4(11)
  • [11]Su J, Yoon B-J, Dougherty ER: Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PLoS One 2009, 4(12):e8161.
  • [12]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT: Gene Ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25.
  • [13]Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM: Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010, 26(12):i237-i245.
  • [14]Breslin T, Krogh M, Peterson C, Troein C: Signal transduction pathway profiling of individual tumor samples. BMC Bioinforma 2005, 6:163. BioMed Central Full Text
  • [15]Svensson JP, Stalpers LJ, Esveldt-van Lange RE, Franken NA, Haveman J, Klein B, Turesson I, Vrieling H, Giphart-Gassler M: Analysis of gene expression using gene sets discriminates cancer patients with and without late radiation toxicity. PLoS Med 2006, 3(10):e422.
  • [16]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102(43):15545-15550.
  • [17]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010, 28(5):511-515.
  • [18]Lee S, Seo CH, Lim B, Yang JO, Oh J, Kim M, Lee B, Kang C, Lee S: Accurate quantification of transcriptome from RNA-Seq data by effective length normalization. Nucleic Acids Res 2011, 39(2):e9.
  • [19]Hung JH, Whitfield TW, Yang TH, Hu ZJ, Weng ZP, DeLisi C: Identification of functional modules that correlate with phenotypic difference: the influence of network topology. Genome Biol 2010., 11(2)
  • [20]Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M: Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci U S A 2007, 104(44):17494-17499.
  • [21]Makar AP, Baekelandt M, Trope CG, Kristensen GB: The Prognostic-Significance of Residual Disease, Figo Substage, Tumor Histology, and Grade in Patients with Figo Stage-Iii Ovarian-Cancer. Gynecol Oncol 1995, 56(2):175-180.
  • [22]Eifel P, Axelson JA, Costa J, Crowley J, Curran WJ Jr, Deshler A, Fulton S, Hendricks CB, Kemeny M, Kornblith AB, et al.: National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst 2001, 93(13):979-989.
  • [23]McGuire WL: Breast cancer prognostic factors: evaluation guidelines. J Natl Cancer Inst 1991, 83(3):154-155.
  • [24]EBCTG: Polychemotherapy for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group. Lancet 1998, 352(9132):930-942.
  • [25]Weston J, Elisseeff A, BakIr G, Sinz F: Spider SVM Toolbox [online]. 2006. http://people.kyb.tuebingen.mpg.de/spider/ webcite
  • [26]Chen R, Li L, Butte AJ: AILUN: reannotating gene expression data automatically. Nat Methods 2007, 4(11):879-879.
  • [27]Schaner ME, Ross DT, Ciaravino G, Sorlie T, Troyanskaya O, Diehn M, Wang YC, Duran GE, Sikic TL, Caldeira S, et al.: Gene expression patterns in ovarian carcinomas. Mol Biol Cell 2003, 14(11):4376-4386.
  • [28]Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. Nat Genet 2004, 36(10):1090-1098.
  • [29]Schwartz DR, Kardia SL, Shedden KA, Kuick R, Michailidis G, Taylor JM, Misek DE, Wu R, Zhai Y, Darrah DM, et al.: Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 2002, 62(16):4722-4729.
  • [30]Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M: KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 1999, 27(1):29-34.
  • [31]Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E: Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 2006, 12(2):405-410.
  • [32]Wang X, Jin DY, Ng RW, Feng H, Wong YC, Cheung AL, Tsao SW: Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res 2002, 62(6):1662-1668.
  • [33]Solbach C, Roller M, Fellbaum C, Nicoletti M, Kaufmann M: PTTG mRNA expression in primary breast cancer: a prognostic marker for lymph node invasion and tumor recurrence. Breast 2004, 13(1):80-81.
  • [34]Helms MW, Kemming D, Pospisil H, Vogt U, Buerger H, Korsching E, Liedtke C, Schlotter CM, Wang A, Chan SY: Squalene epoxidase, located on chromosome 8q24.1, is upregulated in 8q + breast cancer and indicates poor clinical outcome in stage I and II disease. Br J Cancer 2008, 99(5):774-780.
  • [35]Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC, Flury R, Dieterich H, Spyratos F, Eppenberger U, et al.: Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res 2007, 9(3):R33. BioMed Central Full Text
  • [36]Yu K, Lee CH, Tan PH, Tan P: Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations. Clin Cancer Res 2004, 10(16):5508-5517.
  • [37]Welcsh PL, King MC: BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Hum Mol Genet 2001, 10(7):705-713.
  • [38]Kim A, Enomoto T, Serada S, Ueda Y, Takahashi T, Ripley B, Miyatake T, Fujita M, Lee CM, Morimoto K, et al.: Enhanced expression of Annexin A4 in clear cell carcinoma of the ovary and its association with chemoresistance to carboplatin. Int J Cancer 2009, 125(10):2316-2322.
  • [39]Ruiz-Garcia E, Scott V, Machavoine C, Bidart JM, Lacroix L, Delaloge S, Andre F: Gene expression profiling identifies Fibronectin 1 and CXCL9 as candidate biomarkers for breast cancer screening. Br J Cancer 2010, 102(3):462-468.
  • [40]Khuon S, Liang L, Dettman RW, Sporn PH, Wysolmerski RB, Chew TL: Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci 2010, 123(Pt 3):431-440.
  • [41]Wang X, Pankratz VS, Fredericksen Z, Tarrell R, Karaus M, McGuffog L, Pharaoh PD, Ponder BA, Dunning AM, Peock S, et al.: Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 2010, 19(14):2886-2897.
  • [42]Percy MJ, Myrie KA, Neeley CK, Azim JN, Ethier SP, Petty EM: Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Gene Chromosome Cancer 2000, 29(4):356-362.
  • [43]Chiriva-Internati M, Ferrari R, Prabhakar M, Yu Y, Baggoni L, Moreno J, Gagliano N, Portinaro N, Jenkins MR, Frezza EE, et al.: The pituitary tumor transforming gene 1 (PTTG-1): an immunological target for multiple myeloma. J Transl Med 2008, 6:15. BioMed Central Full Text
  • [44]Zorn KK, Bonome T, Gangi L, Chandramouli GV, Awtrey CS, Gardner GJ, Barrett JC, Boyd J, Birrer MJ: Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 2005, 11(18):6422-6430.
  • [45]van Lith M, van Ham M, Neefjes J: Novel polymorphisms in HLA-DOA and HLA-DOB in B-cell malignancies. Immunogenetics 2002, 54(8):591-595.
  • [46]Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR: Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics 2009, 8(4):827-845.
  • [47]Yu L, Liu C, Vandeusen J, Becknell B, Dai Z, Wu YZ, Raval A, Liu TH, Ding W, Mao C, et al.: Global assessment of promoter methylation in a mouse model of cancer identifies ID4 as a putative tumor-suppressor gene in human leukemia. Nat Genet 2005, 37(3):265-274.
  • [48]Boren T, Xiong Y, Hakam A, Wenham R, Apte S, Wei Z, Kamath S, Chen DT, Dressman H, Lancaster JM: MicroRNAs and their target messenger RNAs associated with endometrial carcinogenesis. Gynecol Oncol 2008, 110(2):206-215.
  • [49]Dranoff G: Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004, 4(1):11-22.
  • [50]Rubin LL, de Sauvage FJ: Targeting the Hedgehog pathway in cancer. Nat Rev Drug Discov 2006, 5(12):1026-1033.
  • [51]Behrens J: The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Treat 1993, 24(3):175-184.
  • [52]Polakis P: Wnt signaling and cancer. Genes Dev 2000, 14(15):1837-1851.
  • [53]Wakefield LM, Roberts AB: TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002, 12(1):22-29.
  • [54]Bruggemann LW, Versteeg HH, Niers TM, Reitsma PH, Spek CA: Experimental melanoma metastasis in lungs of mice with congenital coagulation disorders. J Cell Mol Med 2008, 12(6B):2622-2627.
  • [55]Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD: Complement and coagulation: strangers or partners in crime? Trends Immunol 2007, 28(4):184-192.
  • [56]Touitou Y, Bogdan A, Auzeby A: Experimental evidence for biosynthesis of steroids in metastatic tissue originating from a primitive adrenocortical carcinoma. Int J Biochem 1983, 15(4):571-573.
  • [57]Dorfman RI, Sharma DC, Southren AL, Gabrilove JL: Biosynthesis of steroids in various tissues related to feminizing syndromes. Cancer Res 1965, 25(7):1125-1128.
  • [58]Taipale J, Beachy PA: The Hedgehog and Wnt signalling pathways in cancer. Nature 2001, 411(6835):349-354.
  • [59]Yang L, He J, Huang S, Zhang X, Bian Y, He N, Zhang H, Xie J: Activation of hedgehog signaling is not a frequent event in ovarian cancers. Mol Cancer 2009, 8:112. BioMed Central Full Text
  • [60]Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S, Katano M: Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004, 64(17):6071-6074.
  • [61]Gatcliffe TA, Monk BJ, Planutis K, Holcombe RF: Wnt signaling in ovarian tumorigenesis. Int J Gynecol Cancer 2008, 18(5):954-962.
  • [62]Tell S, Yi H, Jockovich ME, Murray TG, Hackam AS: The Wnt signaling pathway has tumor suppressor properties in retinoblastoma. Biochem Biophys Res Commun 2006, 349(1):261-269.
  • [63]Rask K, Nilsson A, Brannstrom M, Carlsson P, Hellberg P, Janson PO, Hedin L, Sundfeldt K: Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer 2003, 89(7):1298-1304.
  • [64]Claus EB, Schildkraut JM, Thompson WD, Risch NJ: The genetic attributable risk of breast and ovarian cancer. Cancer 1996, 77(11):2318-2324.
  文献评价指标  
  下载次数:134次 浏览次数:16次