期刊论文详细信息
Algorithms for Molecular Biology
On the group theoretical background of assigning stepwise mutations onto phylogenies
Mareike Fischer2  Steffen Klaere1  Minh Anh Thi Nguyen2  Arndt von Haeseler2 
[1] Department of Statistics and School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
[2] , Center for Integrative Bioinformatics ViennaMax F. Perutz Laboratories, University of Vienna, Medical University of Vienna, University of Veterinary Medicine Vienna, Dr. Bohr Gasse 9, A-1030, Vienna, Austria
关键词: Group theory;    Tree reconstruction;    Substitution model;    Maximum parsimony;    Maximum likelihood;   
Others  :  794807
DOI  :  10.1186/1748-7188-7-36
 received in 2011-10-17, accepted in 2012-12-10,  发布年份 2012
PDF
【 摘 要 】

Recently one step mutation matrices were introduced to model the impact of substitutions on arbitrary branches of a phylogenetic tree on an alignment site. This concept works nicely for the four-state nucleotide alphabet and provides an efficient procedure conjectured to compute the minimal number of substitutions needed to transform one alignment site into another. The present paper delivers a proof of the validity of this algorithm. Moreover, we provide several mathematical insights into the generalization of the OSM matrix to multi-state alphabets. The construction of the OSM matrix is only possible if the matrices representing the substitution types acting on the character states and the identity matrix form a commutative group with respect to matrix multiplication. We illustrate this approach by looking at Abelian groups over twenty states and critically discuss their biological usefulness when investigating amino acids.

【 授权许可】

   
2012 Fischer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705073137423.pdf 1411KB PDF download
Figure 4. 83KB Image download
Figure 4. 83KB Image download
Figure 4. 83KB Image download
Figure 4. 83KB Image download
Figure 4. 83KB Image download
Figure 3. 31KB Image download
Figure 3. 31KB Image download
Figure 3. 31KB Image download
Figure 3. 31KB Image download
Figure 2. 31KB Image download
Figure 1. 197KB Image download
Figure 1. 197KB Image download
Figure 1. 197KB Image download
【 图 表 】

Figure 1.

Figure 1.

Figure 1.

Figure 2.

Figure 3.

Figure 3.

Figure 3.

Figure 3.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

【 参考文献 】
  • [1]Durbin R, Eddy SR, Krogh A, Mitchison G: Biological sequence analysis - Probabilistic models of proteins and nucleic acids. Cambridge: Cambridge University Press; 1998.
  • [2]Mount DW: Bioinformatics: Sequence and Genome Analysis. New York: Cold Spring Harbor; 2004.
  • [3]Semple C, Steel M: Phylogenetics. New York: Oxford University Press; 2003.
  • [4]Nguyen MAT, Klaere S, von Haeseler A: MISFITS: evaluating the goodness of fit between a phylogenetic model and an alignment. Mol Biol Evol 2011, 28:143-152.
  • [5]Klaere S, Gesell T, von Haeseler A: The impact of single substitutions on multiple sequence alignments. Philos T R Soc B 2008, 363:4041-4047.
  • [6]Kimura M: Estimation of Evolutionary Distances between Homologous Nucleotide Sequences. P Natl Acad Sci USA 1981, 78:454-458.
  • [7]Fitch WM: Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971, 20:406-416.
  • [8]Humphreys JF: A course in group theory. New York: Oxford University Press; 1996.
  • [9]Hendy M, Penny D, Steel M: A discrete Fourier analysis for evolutionary trees. P Natl Acad Sci USA 1994, 91:3339-3343.
  • [10]Bashford JD, Jarvis PD, Sumner JG, Steel MA: U(1)×U(1)×U(1) symmetry of the Kimura 3ST model and phylogenetic branching processes. J Phys A: Math Gen 2004, 37:L81—L89.
  • [11]Bryant D: Hadamard Phylogenetic Methods and the n-taxon process. Bull Math Biol 2009, 71(2):339-351.
  • [12]Hendy MD, Penny D: A framework for the quantitative study of evolutionary trees. Syst Zool 1989, 38(4):297-309.
  • [13]MacLane S, Birkhoff G: Algebra. Chelsea: American Mathematical Society; 1999.
  • [14]Bryant D: Extending Tree Models to Split Networks. In Algebraic Statistics for Computational Biology. Edited by Pachter L, Sturmfels B. Cambridge: Cambridge University Press; 2005.
  • [15]Kimura M: A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide Sequences. J Mol Evol 1980, 16:111-120.
  • [16]Horn RA, Johnson CR: Topics in matrix analysis. New York: Oxford University Press; 1991.
  • [17]Steeb WH, Hardy Y: Matrix Calculus and Kronecker Product: A Practical Approach to Linear and Multilinear Algebra. Singapore: World Scientific Publishing; 2011.
  • [18]Cayley A: Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. Am J Math 1878, 1(2):174-176.
  • [19]Nguyen MAT, Gesell T, von Haeseler A: ImOSM: Intermittent Evolution and Robustness of Phylogenetic Methods. Mol Biol Evol 2012, 29(2):663-673.
  • [20]Horn RA, Johnson CR: Matrix analysis. Cambridge: Cambridge University Press; 1990.
  • [21]Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993, 10(3):512-526.
  • [22]Sumner JG, Holland BR, Jarvis PD: The Algebra of the General Markov Model on Phylogenetic Trees and Networks. Bull Math Biol 2012, 74(4):858-880.
  • [23]Sumner JG, Jarvis PD, Fernandez-Sanchez J, Kaine B, Woodhams M, Holland BR: Is the general time-reversible model bad for molecular phylogenetics? Syst Biol 2012, 61(6):1069-1074.
  • [24]Keilen T: Endliche Gruppen. Eine Einführung mit dem Ziel der Klassifikation von Gruppen kleiner Ordnung. 2000. [http://www.mathematik.uni-kl.de/wwwagag/download/scripts/Endliche.Gruppen.pdf webcite]
  • [25]Kosiol C, Goldman N: Different Versions of the Dayhoff Rate Matrix. Mol Biol Evol 2005, 22(2):193-199.
  • [26]Susko E, Roger AJ: On Reduced Amino Acid Alphabets for Phylogenetic Inference. Mol Biol Evol 2007, 24(9):2139-2150.
  文献评价指标  
  下载次数:157次 浏览次数:14次