Biomarker Research | |
Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis | |
Stephanie Fryar-Williams1  Jörg E Strobel2  | |
[1] Youth in Mind Research Institute, Norwood, SA, Australia | |
[2] The University of Adelaide, Adelaide, SA, Australia | |
关键词: Noradrenaline; Sensory processing; Psychosis; Schizophrenia; Translational; Mental illness; Biomarkers; | |
Others : 1132558 DOI : 10.1186/s40364-015-0028-1 |
|
received in 2014-12-14, accepted in 2015-01-12, 发布年份 2015 | |
【 摘 要 】
Background
The Mental Health Biomarker Project (2010–2014) selected commercial biochemistry markers related to monoamine synthesis and metabolism and measures of visual and auditory processing performance. Within a case–control discovery design with exclusion criteria designed to produce a highly characterised sample, results from 67 independently DSM IV-R-diagnosed cases of schizophrenia and schizoaffective disorder were compared with those from 67 control participants selected from a local hospital, clinic and community catchment area. Participants underwent protocol-based diagnostic-checking, functional-rating, biological sample-collection for thirty candidate markers and sensory-processing assessment.
Results
Fifteen biomarkers were identified on ROC analysis. Using these biomarkers, odds ratios, adjusted for a case–control design, indicated that schizophrenia and schizoaffective disorder were highly associated with dichotic listening disorder, delayed visual processing, low visual span, delayed auditory speed of processing, low reverse digit span as a measure of auditory working memory and elevated levels of catecholamines. Other nutritional and biochemical biomarkers were identified as elevated hydroxyl pyrroline-2-one as a marker of oxidative stress, vitamin D, B6 and folate deficits with elevation of serum B12 and free serum copper to zinc ratio.
When individual biomarkers were ranked by odds ratio and correlated with clinical severity, five functional domains of visual processing, auditory processing, oxidative stress, catecholamines and nutritional-biochemical variables were formed. When the strengths of their inter-domain relationships were predicted by Lowess (non-parametric) regression, predominant bidirectional relationships were found between visual processing and catecholamine domains. At a cellular level, the nutritional-biochemical domain exerted a pervasive influence on the auditory domain as well as on all other domains.
Conclusions
The findings of this biomarker research point towards a much-required advance in Psychiatry: quantification of some theoretically-understandable, translationally-informative, treatment-relevant underpinnings of serious mental illness. This evidence reveals schizophrenia and schizoaffective disorder in a somewhat different manner, as a conglomerate of several disorders many of which are not currently being assessed-for or treated in clinical settings. Currently available remediation techniques for these underlying conditions have potential to reduce treatment-resistance, relapse-prevention, cost burden and social stigma in these conditions. If replicated and validated in prospective trials, such findings will improve progress-monitoring and treatment-response for schizophrenia and schizoaffective disorder.
【 授权许可】
2015 Fryar-Williams and Strobel; licensee Biomed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150304010853263.pdf | 2114KB | download | |
Figure 5. | 55KB | Image | download |
Figure 4. | 39KB | Image | download |
Figure 3. | 45KB | Image | download |
Figure 2. | 224KB | Image | download |
Figure 1. | 62KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Nesse RM, Stein DJ: Towards a genuinely medical model for psychiatric nosology. BMC Med 2012, 10:5.
- [2]Andresen NC: Positive vs. negative schizophrenia: a critical evaluation. Schizophr Bull 1985, 11(3):380-9.
- [3]Sober G, Ben-Shahab D, Cardoon M, Alkaid P, Fontan AN, Garlic M, et al.: Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 2009, 10:127-55.
- [4]Domenici E, Muglia P: The search for peripheral markers in psychiatry by genomic and proteomic approaches. Expr Open Med Deign 2007, 1:235-51.
- [5]Schwarz E, Guest PC, Rahmoune H, Harris LW, Wang L, Leek FM, et al.: Identification of a biological signature for schizophrenia in serum. Mol Psychiatry 2012, 17:494-502.
- [6]Bracken P, Thomas P, Timini S, Asen E, Behr G, Beuster C, et al.: Psychiatry beyond the current paradigm. BJ Psych 2012, 201:430-4.
- [7]Stayer C, Sporn A, Gogtay N, Tossell J, Lenane M, Gochman P, et al.: Looking for childhood schizophrenia: case series of false positives. J Am Acad Child Adolesc Psychiatry 2004, 43(8):1026-9.
- [8]McGorry PD: Paradigm failure in functional psychoses: review and implications. Aust NZ J Psychiatry 1991, 25(1):43-55.
- [9]Singh I, Rose N: Biomarkers in psychiatry. Nature 2009, 460:202-7.
- [10]Cheniaux E, Landeira-Fernandez J, Versiani M: The diagnoses of schizophrenia, schizoaffective disorder, bipolar disorder and unipolar depression: inter-rater reliability and congruence between DSM-IV and ICD-10. Psychopathology 2009, 42:293-8.
- [11]American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders. (4th Ed. Rev) (DSM IV-R). American Psychiatric Association, Washington DC; 1994.
- [12]Wurtman RJ, Hefti F, Melamed E: Precursor control of neurotransmitter synthesis. Pharmacol Rev 1980, 32(4):315-35.
- [13]Krebs MO, Bellon A, Mainguy G, Jay TM, Frieling H: One-carbon metabolism and schizophrenia: current challenges and future directions. Trends Mol Med 2009, 15(12):562-70.
- [14]Shea TB, Rogers E: Lifetime requirement of the methionine cycle for neuronal development and maintenance. Curr Opin Psychiatry 2014, 27:138-42.
- [15]Van Kammen DP, Kelley M: Dopamine and norepinephrine activity in schizophrenia: an integrative perspective. Schizophr Res 1991, 4:173-91.
- [16]Irvine DG: Hydroxy-haemopyrrolenone, not kryptopyrrole, in the urine of schizophrenics and porphyrics. Clin Chem 1978, 24(11):2069-70.
- [17]McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, et al.: Neonatal vitamin D status and risk of schizophrenia: a population-based case–control study. Arch Gen Psychiatry 2010, 67(9):889-94. doi:10.1001/archgenpsychiatry.2010.110
- [18]Halsted CH: B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med (CCLM) 2013, 51(3):457-565.
- [19]Banerjee RV, Matthews RG: Cobalamin-dependent methionine synthase. FASEB J 1990, 4(5):1450-9.
- [20]Bottiglieri T, Laundy M, Crellin R, Toone BK, Carney MWP, Reynolds EH: Homocysteine, folate, methylation and monoamine metabolism in depression. J Neurol Neurosurg Psychiatry 2000, 69:228-32.
- [21]Waggoner DJ, Bartnikas TB, Gitlin JD: The role of copper in neurodegenerative disease. J Neurochem 1999, 72(5):2092-8.
- [22]Peariso K, Goulding CW, Huang S, Matthews RG, Penner-Hahn JE: Characterization of the zinc binding site in methionine synthase enzymes of escherichia coli: the role of zinc in the methylation of homocysteine. J Am Chem Soc 1998, 120(33):8410-6.
- [23]Selhub J: Homocysteine metabolism. Annu Rev Nutr 1999, 19:217-46.
- [24]Wolf TL, Kotun J, Meador-Woodruff JH: Plasma copper, iron, ceruloplasmin and ferroxidase activity in schizophrenia. Schizophr Res 2006, 86(1–3):167-71.
- [25]Brown DD, Tomchick R, Axelrod J: The distribution and properties of a histamine-methylating enzyme. J Biol Chem 1959, 234:2948-50.
- [26]Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T, Ueland PM: The methylenetetrahydrofolate reductase 677CT Polymorphism as a modulator of a B vitamin network with major effects on homocysteine metabolism. Am J Hum Gen 2007, 80(5):546-855.
- [27]Bradley AP: The use of the area under the ROC Curve in the evaluation of machine-learning algorithms. Pattern Recogn 1997, 30:1145-58.
- [28]DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44:837-45.
- [29]Addinsoft: XLSTAT. 2013. Available at: http://www.xlstat.com/en/about-us/news.html.
- [30]Mathwave. 2013. http://www.brothersoft.com/easyfit-for-excel-219559.html.
- [31]Grund B, Sabin C: Analysis of biomarker data: logs, odds ratios and ROC curves. Curr Opin HIV AIDS 2010, 5(6):473-9.
- [32]Lijmer JG, Mol BW, Heisterkamp S, Bonsei GJ, Prins MH, van der Meulen JHP, et al.: Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999, 282(11):1061-6. e141
- [33]Kay SR, Fiszbein A, Opler LA: The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13(2):261-76.
- [34]Cleveland WS, Devlin SJ: Locally- Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc 1988, 83(403):596-601.
- [35]Viertiö S, Laitinen A, Perälä J, Saami SI, Koskinen S, Lönnqvist J, et al.: Visual impairment in persons with psychotic disorder. Soc Psychiatry Psychiatr Epidemiol 2007, 42(11):902-8.
- [36]Carter C, Robertson L, Nordahl T, Chaderjian M, Kraft L, O’Shora-Celaya L: Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biol Psychiatry 1996, 40(9):930-2.
- [37]Bustillo JR, Thacker G, Buchanan RW, Moran M, Kirkpatrick B, Carpenter WT: Visual information processing impairments in deficit and non-deficit schizophrenia. Am J Psych 1997, 154:647-54.
- [38]Lobel DS, Swanda RM, Losonczy MF: Lateralized visual-field inattention in schizophrenia. Percept Mot Skills 1994, 79(1):699-702.
- [39]Mackay-Sim A, Féron F, Eyles D, Burne T, McGrath J: Schizophrenia, vitamin D and brain development. Int Rev Neurobiol 2004, 59:351-80.
- [40]Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D: New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002, 13(3):100-5.
- [41]Kukreja SC, Hargis GK, Bowser N, Henderson WJ, Fisherman EW, Williams GA: Role of adrenergic stimuli in parathyroid hormone secretion in man. J Clin Endocrinol Metabol 1975, 40(3):478-81.
- [42]Baksi SN, Hughes MJ: Chronic vitamin D deficiency in the weanling rat alters catecholamine metabolism in the cortex. Brain Res 1982, 242(2):387-90.
- [43]Constantine-Paton M, Cline HT, Debski E: Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu Rev Neurosci 1990, 13:129-54.
- [44]Heinrichs RW, Zakzanis KK: Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology 1998, 12(3):426-45.
- [45]Tsigos C, Chrousos GP: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 2002, 53(4):865-71.
- [46]Silverstein SM, Keane BP: Vision science and schizophrenia research: toward a re-view of the disorder: Editors introduction to special session. Schizophr Bull 2011, 37(4):681-9.
- [47]Conklin HM, Curtis CE, Katsanis J, Iacono WG: Verbal working memory impairment in schizophrenia patients and their first-degree relatives: evidence from the digit span task. Am J Psych 2000, 157(2):275-7.
- [48]Keith RW: SCAN-3 Test for Adolescents and Adults, Pearson Clinical and Talent Assessment. 2009.
- [49]Løberg EM, Hugdahl K, Green MF: Hemispheric asymmetry in schizophrenia: a “dual deficits” model. Biol Psychiatry 1999, 45(1):76-81.
- [50]Korboot PJ, Damiani N: Auditory processing speed and signal detection in schizophrenia. J Abnorm Psychol 1976, 85(3):287-95.
- [51]Gallinat J, Mulert C, Bajbouj M, Herrmann WM, Schunter J, Senkowski D, et al.: Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia. Neuroimage 2002, 17(1):110-27.
- [52]Braff DL, Saccuzzo DP: Effect of antipsychotic medication on speed of information processing in schizophrenic patients. Am J Psych 1982, 139(9):1127-30.
- [53]Saedisomeolia A, Djalali M, Moghadam AM, Ramezankhani O, Najmi L: Folate and vitamin B12 status in schizophrenic patients. J R M S 2011, 16(S1):S437-41.
- [54]Durga J, Verhoef P, Lucien JC, Anteunis LJC, Schouten E, Kok FJ: Effects of folic acid supplementation on hearing in older adults: a randomized, controlled trial. Ann Intern Med 2007, 146(1):1-9.
- [55]Wade LA, Katzman R: Synthetic amino acids and the nature of L dopa transport at the blood–brain barrier. J Neurochem 1975, 25:837-42. doi:10.1111/j.1471-4159.1975.tb04415
- [56]Allen GFG, Neergheen V, Oppenheim M, Fitzgerald JC, Footitt E, Hyland K, et al.: Pyridoxal 5′-phosphate deficiency causes a loss of aromatic l-amino acid decarboxylase in patients and human neuroblastoma cells, implications for aromatic l-amino acid decarboxylase and vitamin B-6 deficiency states. J Neurochem 2010, 114(1):87-96.
- [57]Niu X, Tahera Y, Canlon B: Environmental enrichment to sound activates dopaminergic pathways in the auditory system. Physiol Behav 2007, 92(1–2):34-9.
- [58]Crow TJ, Baker HF, Cross AJ, Joseph MH, Lofthouse R, Longden A, et al.: Monoamine mechanisms in chronic schizophrenia: post-mortem neurochemical findings. Br J Psychiatry 1979, 134:249-56.
- [59]Meltzer HY, Stahl SM: The dopamine hypothesis of schizophrenia: a review. Schizophr Bull 1976, 2(1):19-76.
- [60]Kemali D, Del Vecchio M, Maj M: Increased noradrenaline levels in CSF and plasma of schizophrenic patients. Biol Psychiatry 1982, 7(6):711-7.
- [61]Gomes UC, Shanley BC, Potgieter L, Roux JT: Noradrenergic overactivity in chronic schizophrenia: evidence based on cerebrospinal fluid noradrenaline and cyclic nucleotide concentrations. BJ Psych 1980, 137:346-51.
- [62]Kosten TR, Mason JW, Giller EL, Ostroff RB, Harkness L: Sustained norepinephrine and epinephrine elevation in post-traumatic stress disorder. Psychoneuroendocrinology 1987, 12(1):13-20.
- [63]Kennedy BL, Dhaliwal N, Pedley L, Sahner C, Greenberg R, Manshadi MS: Post-traumatic stress disorder in subjects with schizophrenia and bipolar disorder. J KMA 2002, 100(9):395-9.
- [64]Adler LE, Gerhardt GA, Franks R, Baker N, Nagamoto H, Drebing C, et al.: Sensory physiology and catecholamines in schizophrenia and mania. Psychiatry Res 1990, 31(3):297-309.
- [65]Walker E, Mittal V, Tessner K: Stress and the hypothalamic pituitary axis in the developmental course of schizophrenia. Annu Rev Clin Psychol 2008, 4:189-216.
- [66]Ryan MCM, Sharifi N, Condren R, Thakore JH: Evidence of basal pituitary–adrenal overactivity in first episode, drug naïve patients with schizophrenia. Psychoneuroendocrinology 2004, 29(8):1065-70.
- [67]Pariante CM, Dazzan P, Danese A, Morgan KD, Brudaglio F, Morgan C, et al.: Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the AESOP first-onset psychosis study. Neuropsychopharmacology 2005, 30:1923-31.
- [68]Hoffer A: Schizophrenia: an evolutionary defence against severe stress. JOM 1994, 9(4):205-20.
- [69]Calcagni E, Elenkov I: Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann N Y Acad Sci 2006, 1069:62-76.
- [70]Padgett DA, Glaser R: How stress influences the immune response. Trends Immunol 2003, 24(8):444-8.
- [71]Carrisson SL, Beiting DJ, Kiani CA, Abell K, McGillis JP: Catecholamines decrease lymphocyte adhesion to cytokine-activated endothelial cells. Brain Behav Immun 1996, 10:55-67.
- [72]Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI: Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 2004, 67(2–3):269-75.
- [73]van Praag HM, Asnis GM, Kahn RS, Brown S, Korn M, Friedman JM, et al.: Monoamines and abnormal behaviour. A multiaminergic perspective. BJ Psych 1990, 157:723-34.
- [74]Adler LE, Pang K, Gerhardt G, Rose GM: Modulation of the gating of auditory evoked potentials by norepinephrine: pharmacological evidence obtained using a selective neurotoxin. Biol Psychiatry 1998, 24:179-90.
- [75]Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM: Alpha-1-noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry 1999, 45:26-31.
- [76]Grover S, Kulhara P: Deficit schizophrenia: Concept and validity. Indian J Psychiatr 2008, 50b(1):61-6.
- [77]A-E A, Ghanem , Ali EM, El-Bakary AA, El-Morsy DA, Elkanishi SMH, et al.: Copper and Zinc levels in hair of both schizophrenic and depressed patients. Mansoura J Forensic Med Clin Toxicol 2009, 17(1):89-102.
- [78]Wallwork JC, Boltnen JH, Sandstead HH: Zinc deficiency causes an increase in brain norepinephrine. J Nutr 1982, 112(3):514-9.
- [79]Kemperman RFJ, Veurink M, van der Wal T, Knegtering H, Bruggeman R, Fokkema MR, et al.: 2006. PLEFA (Prostaglandins, Leukotrines and Essential Fatty Acids) 2006, 74(2):75-85.
- [80]Lindström LH, Gefvert O, Hagberg G, Lundberg T, Bergström M, Hartvig P, et al.: Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 1999, 46(5):681-8.
- [81]Pfeiffer CC, Iliev V: Pyroluria, urinary mauve factor, Causes Double Deficiency of B6 and Zinc in Schizophrenics. Fed Am Soc Exp Biol 1973, 32:276.
- [82]Hidalgo FJ, Nogales F, Zamora R: Determination of pyrrolized phospholipids in oxidized phospholipid vesicles and lipoproteins. Biochemistry 2004, 334(1):155-63.
- [83]Russell CS: Biosynthesis of porphyrins and the origin of “mauve factor”. J Theor Biol 1972, 35(2):277-83.
- [84]Percy MJ, McFerran NV, Lappin TR: Disorders of oxidised haemoglobin. Blood Rev 2005, 19(2):61-8.
- [85]Graham DJM, Thompson GG, Moore MR, Goldberg AA: The effects of selected monopyrroles on various aspects of heme biosynthesis and degradation in the rat. Arch Biochem Biophys 1979, 65(1):132-8.
- [86]Cutler MG, Douglas JM, Graham DJM, Moore MR: The mauve factor of porphyria, 3-ethyl-5-hydroxy-4, 5-dimethyl-delta-3-pyrroline-2-one: Effects on behaviour of rats and mice. BCPT (Basic & Clinical Pharmacology & Toxicology 1990, 66(1):66-68.
- [87]McGinnis WR, Audhya T, Walsh WJ, Jackson JA, McLaren-Howard J, Lewis A, et al.: Discerning the Mauve Factor, Part 1. Altern Ther Health Med 2008, 14(2):40-50.
- [88]Irvine DG: Pyrroles in neuropsychiatric and porphyric disorders: confirmation of metabolic structure and synthesis. Life Sci 1978, 23(9):983-90.
- [89]Waggoner DJ, Bartnikas TB, Gitlin JD: The role of copper in neurodegenerative disease. Neurobiol Dis 1999, 6(4):221-30.
- [90]Walterfang M, March E, Varghese D, Miller K, Simpson L, Tomlinson B, et al.: Schizophrenia-like psychosis and aceruloplasminemia. J Neuropsychiatr Dis Treat 2006, 2(4):577-81.
- [91]Gaetke LM, Chow CK: Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology 2003, 189:147-63.
- [92]Bar-Or D, Rael LT, Thomas GW, Kraus JP: Inhibitory effect of copper on cystathione beta synthase activity: protective effect of an analog of the human albumin N-terminus. Protein Pept Lett 2005, 12(3):271-3.
- [93]Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, et al.: The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999, 38(24):7609-16.
- [94]Bremner I, Beattie JH: Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 1995, 54:489-99.
- [95]Saito A, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH: Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the bad cell death signalling pathway. J Neurosci 2003, 23(5):1710-8.
- [96]Cunnane S: Evidence that adverse effects of zinc deficiency on essential fatty acid composition in rats are independent of food intake. Br J Nutr 1998, 59:273-8.
- [97]Martenson RE: Myelin: In: Biology and Chemistry. CRC Press Inc, Boca Raton, FL 33487. USA; 1992.
- [98]Surtees H, Mills P, Clayton P: Inborn errors affecting vitamin B6 metabolism. Future Neurol 2006, 1:615-20.
- [99]Smolin LA, Benevenga NJ: Accumulation of homocyst(e)ine in vitamin B-6 deficiency: a model for the study of cystathionine beta-synthase deficiency. J Nutr 1982, 112(7):1264-72.
- [100]Meier M, Janosik M, Kery V, Burkhard P: Structure of human cystathionine beta-synthase: a unique pyridoxal 5-phosphate (PLP)-dependent heme protein. EMBO J 2001, 20(15):3910-6.
- [101]Nguyen TT, Hayakawa T, Tsuge H: Effect of vitamin B6 deficiency on the synthesis and accumulation of S-adenosylhomocysteine and S-adenosylmethionine in rat tissues. J Nutr Sci Vitaminol (Tokyo) 2001, 47(3):188-94.
- [102]Schatz RA, Wilens TE, Sellinger OZ: Decreased transmethylation of biogenic amines after In Vivo elevation of Brain S- Adenosyl-L-Homocysteine. J Neurochem 1981, 36(5):1739-48.
- [103]Deguchi T, Barchas J: Inhibition of transmethylations of biogenic amines by S-Adenosylhomocysteine. Enhancement of transmethylation by adenosylhomocysteine. J Biol Chem 1971, 246:3175-81.
- [104]Coward JK, D’Urso-Scott M, Sweet WD: Inhibition of catechol-O-methyltransferase by S-adenosylhomocysteine and S-adenosylhomocysteine sulfoxide, a potential transition-state analog. Biochem Pharmacol 1972, 21(8):1200-3.
- [105]Burke WJ, Li SW, Chung HD, Ruggiero DA, Kristal BS, Johnson EM, et al.: Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: role in neurodegenerative Diseases. Neurotoxicology 2004, 25(1–2):101-15.
- [106]Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M: Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry 2006, 11:143-9.
- [107]Virgos C, Martorell L, Simó JM, Valero J, Figuera L, Joven J, et al.: Plasma homocysteine and the methylenetetrahydrofolate reductase C677T gene variant: lack of association with schizophrenia. Neuroreport 1999, 10(10):2035-8.
- [108]Muntjewerff J-W, van der Put N, Eskes T, Ellenbroek B, Steegers E, Blom H, et al.: Homocysteine metabolism and B-vitamins in schizophrenic patients: low plasma folate as a possible independent risk factor for schizophrenia. Psychiatry Res 2003, 121(1):1-9.
- [109]Henderson DC, Borba CP, Daley TB, Boxill R, Nguyen DD, Culhane MA, et al.: Dietary intake profile of patients with schizophrenia. Ann Clin Psychiatry 2006, 18(2):99-105.
- [110]Braun A, Vitisky V, Lu S, Banjeree R: S-adenosylmethionine stabilises cystathionine beta synthase and modulates redox capacity. Proc Natl Acad Sci U S A 2006, 103:6489-94.
- [111]Matthysse S, Baldessarini RJ: S-adenosylmethionine and catechol-O-methyltransferase in Schizophrenia. Am J Psychiatry 1972, 128:1310-2.
- [112]Emiliani FE, Sedlak TW, Sawa A: Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry 2014, 27:185-90.
- [113]Sedvall G: Monoamines and schizophrenia. Acta Psychiatr Scand Suppl 1990, 358:7-13.
- [114]Walker HA, Danielson E, Levitt M: Catechol-O-methyltransferase activity in psychotic children. J Autism Dev Discord 1976, 6(3):263-6.
- [115]Miller JW, Ribaya-Mercado JD, Russell RM, Shepard DC, Morrow FD, Cochary EF, et al.: Effect of vitamin B-6 deficiency on fasting plasma homocysteine concentrations. Am J Clin Nutr 1992, 55(6):1154-60.
- [116]Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, et al.: Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain 2007, 130(7):678-92.
- [117]Breslow NE: Statistics in epidemiology: the case–control study. JASA 1996, 91:19-35.
- [118]Stolley Paul D, Schlesselman James J. Case–Control Studies: Design, Conduct, Analysis. Oxford [Oxfordshire]: Oxford University Press; 1982. ISBN 0-19-502933-X.
- [119]Rutjes AWS, Reitsma JB, Vandenbroucke JP, Glas AS, Bossuyt PMM: Case control and two gate designs in diagnostic accuracy studies. Clin Chem 2005, 51(8):1335-41.
- [120]Doll SR: Smoking and lung cancer. Am J Respir Crit Care Med 2000, 162(1):4-6.
- [121]Saha S, Chant D, Welham J, McGrath J: A systematic review of the prevalence of schizophrenia. PLoS Med 2005, 2(5):e 141.
- [122]Craddock N, Owen MJ. The kraepelinian dichotomy- going, going... but still not gone. Br J Psychiatry. 2010 196 (2):92-95. doi:10.1192/bjp.bp.109.073429
- [123]Duffy JC, Waterto JJ: Under-reporting of alcohol consumption in sample surveys: the effect of computer interviewing in fieldwork. Br J Addict 1984, 79(4):303-8.
- [124]Lambert D, Benhayoun S, Adjalla C, Gélot MM, Renkes P, Gérard P, et al.: Alcoholic cirrhosis and cobalamin metabolism. Digestion 1997, 58:64-71.
- [125]Pombo S, Levy P, Bicho M, Ismail F, Cardoso JMN: Neuropsychological function and platelet monoamine oxidase activity levels in type 1 alcoholic patients. Alcohol Alcohol 2008, 43(4):423-30.
- [126]Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, et al.: Inhibition of monoamine oxidase B in the brains of smokers. Nature 1966, 379:733-6.
- [127]Trachte GJ, Uncini T, Hinz M: Both stimulatory and inhibitory effects of dietary 5-hydroxytryptophan and tyrosine are found on urinary excretion of serotonin and dopamine. Neuropsychiatr Dis Trea 2009, 5:227-35.
- [128]Starkman MN, Cameron OG, Ness RM, Zelnik T: peripheral Catecholamine levels and the Symptoms of anxiety: Studies in patients With and Without Pheochromocytoma. Psychosom Med 1990, 52:129-42.
- [129]Bernheim MLC: An Investigation of Platelet Monoamine Oxidase Activity in Schizophrenia and Schizoaffective Psychosis (Chapter 18). In Ciba Foundation Symposium 29- Monoamine Oxidase and its Inhibition. John Wiley and Sons Ltd, Chichester, UK; 2008.
- [130]Pira L, Mongeau R, Pani L: The atypical antipsychotic quetiapine increases both noradrenaline and dopamine release in the rat prefrontal cortex. Eur J Pharmacol 2004, 504(1–2):61-4.
- [131]Svensson TH: α-Adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuro-Psychopharmacol Biol Psychiat 2003, 27(7):1145-58.
- [132]Hawkins DJ, Unwin P: Paradoxical and severe hypotension in response to adrenaline infusions in massive quetiapine overdose. Crit Care Resusc 2008, 10(4):320-2.
- [133]Takebayashi M, Motohashi N, Saito H, Kagaya A, Yamawaki S: Effect of acute treatment with sodium valproate on catecholamine and serotonin synthesis in mouse cerebral cortex. Neuropsychobiology 1995, 32(3):124-7.
- [134]Mitsikostas D, Sfikakis A, Papadopoulou-Daifoti Z, Varonos D: The effects of valproate in brain monoamines of juvenile rats after stress. Prog Neuro-Psychopharmacol Biol Psychiat 1993, 17(2):295-310.
- [135]Baf MH, Subhash MN, Lakshmana KM, Rao R: Sodium Valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 1994, 24(1):67-72.
- [136]Whittle SR, Turner AJ: Effects of the anticonvulsant sodium valproate on γ-amino butyrate and aldehyde metabolism in ox brain. J Neurochem 1978, 31(6):1453-9.
- [137]Zimmer R, Teelken AW, Gündürewa M, Rüther E, Cramer H: Effect of sodium-valproate on CSF GABA, cAMP, cGMP and homovanillic acid levels in men. Brain Res Bull 1980, 5(2):585-8.
- [138]Hinz M, Stein A, Trachte G, Uncini T: Neurotransmitter testing of the urine: a comprehensive analysis. OJU 2010, 2:177-83.
- [139]Marc DT, Ailts JW, Campeau DG, Bull MJ, Olson KL: Neurotransmitters excreted in the urine as biomarkers of nervous system activity: validity and clinical applicability. Neurosci Biobehav Rev 2011, 35(3):635-44.
- [140]Erdelyi DJ, Elliott M, Phillips B: Urine catecholamines in paediatrics. Arch Dis Child Educ Pract Ed 2011, 96:107-11.
- [141]Grouzmann E, Lamine F: Determination of catecholamines in plasma and urine. Best Pract Research J Clin Endocrinol Metab 2013, 27(5):713-23.
- [142]Simpson GM, Angus JWS: A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 1970, 212(44):11-9.
- [143]Zilles D, Gruber E, Falkai P, Gruber O: Patients with schizophrenia show deficits of working memory maintenance components in circuit-specific tasks. Eu Arch Psychiatry Clin Neurosci 2010, 260(7):519-25.
- [144]Park S, Holzman PS: Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry 1992, 49(12):975-82.
- [145]Riordan-Eva P, Cunningham ET Jr: Vaughan & Asbury’s General Ophthalmology. 18th edition. McGraw-Hill, New York; 2011.
- [146]Maico Diagnostics. Operating Instructions MA 40, Diagnostic GmbH, 2005 Salzufer 13/14, D-10583, Berlin, Germany. Also available: via http://www.audiomedical.cl/maico/SpecSheet.MA39-40-41-42.NEW.pdf.
- [147]Cleveland WS, Devlin SJ. Locally-Weighted Regression: An Approach to Regression Analysis by Local Fitting. J Am Stat Assoc. 1988; 83(403):596–601.