Biotechnology for Biofuels | |
Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei | |
Morgann C Reilly1  Lina Qin1  James P Craig1  Trevor L Starr1  N Louise Glass1  | |
[1] The Energy Biosciences Institute, University of California, Berkeley 94720, CA, USA | |
关键词: Dsc E3 ligase; SREBP; Lignocellulose; Trichoderma reesei; Cellulose; Cellulase; Secretion; Neurospora crassa; | |
Others : 1228159 DOI : 10.1186/s13068-015-0297-9 |
|
received in 2015-02-16, accepted in 2015-07-24, 发布年份 2015 |
【 摘 要 】
Background
The filamentous fungus Neurospora crassa efficiently utilizes plant biomass and is a model organism for genetic, molecular and cellular biology studies. Here, a set of 567 single-gene deletion strains was assessed for cellulolytic activity as compared to the wild-type parental strain. Mutant strains included were those carrying a deletion in: (1) genes encoding proteins homologous to those implicated in the Saccharomyces cerevisiae secretion apparatus; (2) genes that are homologous to those known to differ between the Trichoderma reesei hyper-secreting strain RUT-C30 and its ancestral wild-type strain; (3) genes encoding proteins identified in the secretome of N. crassa when cultured on plant biomass and (4) genes encoding proteins predicted to traverse the secretory pathway.
Results
The 567 single-gene deletion collection was cultured on crystalline cellulose and a comparison of levels of secreted protein and cellulase activity relative to the wild-type strain resulted in the identification of seven hyper-production and 18 hypo-production strains. Some of these deleted genes encoded proteins that are likely to act in transcription, protein synthesis and intracellular trafficking, but many encoded fungal-specific proteins of undetermined function. Characterization of several mutants peripherally linked to protein processing or secretion showed that the hyper- or hypo-production phenotypes were primarily a response to cellulose. The altered secretome of these strains was not limited to the production of cellulolytic enzymes, yet was part of the cellulosic response driven by the cellulase transcription factor CLR-2. Mutants implicated the loss of the SREBP pathway, which has been found to regulate ergosterol biosynthesis genes in response to hypoxic conditions, resulted in a hyper-production phenotype. Deletion of two SREBP pathway components in T. reesei also conferred a hyper-production phenotype under cellulolytic conditions.
Conclusions
These studies demonstrate the utility of screening the publicly available N. crassa single-gene deletion strain collection for a particular phenotype. Mutants in a predicted E3 ligase and its target SREBP transcription factor played an unanticipated role in protein production under cellulolytic conditions. Furthermore, phenotypes similar to those observed in N. crassa were seen following the targeted deletion of orthologous SREBP pathway loci in T. reesei, a fungal species commonly used in industrial enzyme production.
【 授权许可】
2015 Reilly et al.
Files | Size | Format | View |
---|---|---|---|
Fig.8. | 50KB | Image | download |
Fig.7. | 30KB | Image | download |
Fig.6. | 29KB | Image | download |
Fig.5. | 66KB | Image | download |
Fig.4. | 65KB | Image | download |
Fig.3. | 66KB | Image | download |
Fig.2. | 65KB | Image | download |
Fig.1. | 65KB | Image | download |
Fig.8. | 50KB | Image | download |
Fig.7. | 30KB | Image | download |
Fig.6. | 29KB | Image | download |
Fig.5. | 66KB | Image | download |
Fig.4. | 65KB | Image | download |
Fig.3. | 66KB | Image | download |
Fig.2. | 65KB | Image | download |
Fig.1. | 65KB | Image | download |
【 图 表 】
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
Fig.1.
Fig.2.
Fig.3.
Fig.4.
Fig.5.
Fig.6.
Fig.7.
Fig.8.
【 参考文献 】
- [1]Payen (1843) Extrait d’un adressé à m. le maréchal duc de dalmatie, ministre de lay guerre, président du conseil, sur une altération extraordinaire du pain de munition. Ann de Chìmie et de Phys 9:5–22
- [2]Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, et al.: Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc Natl Acad Sci USA 2011, 108:2831-2836.
- [3]Perkins DD, Turner BC, Barry EG: Strains of Neurospora collected from nature. Evolution 1976, 30:281-313.
- [4]Beadle GW, Tatum EL: Genetic control of biochemical reactions in Neurospora. Proc Nat Acad Sci USA 1941, 27:499-506.
- [5]Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, et al.: A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA 2006, 103:10352-10357.
- [6]McCluskey K: The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol 2003, 52:245-262.
- [7]Hirsch HM: Temperature-dependent cellulase production by Neurospora crassa and its ecological implications. Experientia 1954, 10:180-182.
- [8]Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JH, et al.: Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 2009, 106:22157-22162.
- [9]Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL: Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci USA 2012, 109:7397-7402.
- [10]Phillips CM, Iavarone AT, Marletta MA: Quantitative proteomic approach for cellulose degradation by Neurospora crassa. J Proteome Res 2011, 10:4177-4185.
- [11]Sun J, Tian C, Diamond S, Glass NL: Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. Eukaryot Cell 2012, 11:482-493.
- [12]Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR: A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 2013, 91:275-299.
- [13]Glass NL, Schmoll M, Cate JH, Coradetti S: Plant cell wall deconstruction by ascomycete fungi. Annu Rev Microbiol 2013, 67:477-498.
- [14]Znameroski EA, Glass NL: Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol Biofuels 2013, 6:6. BioMed Central Full Text
- [15]Znameroski EA, Coradetti ST, Roche CM, Tsai JC, Iavarone AT, Cate JH, et al.: Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc Nat Acad Sci USA 2012, 109:6012-6017.
- [16]Coradetti ST, Xiong Y, Glass NL: Analysis of a conserved cellulase transcriptional regulator reveals inducer-independent production of cellulolytic enzymes in Neurospora crassa. Microbiol Open 2013, 2:595-609.
- [17]Schekman R: Charting the secretory pathway in a simple eukaryote. Mol Biol Cell 2010, 21:3781-3784.
- [18]Penalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, et al.: Searching for gold beyond mitosis: mining intracellular membrane traffic in Aspergillus nidulans. Cell Logist 2012, 2:2-14.
- [19]Read ND: Exocytosis and growth do not occur only at hyphal tips. Mol Microbiol 2011, 81:4-7.
- [20]Kubicek CP, Starr TL, Glass NL: Plant cell wall degrading enzymes and their secretion in plant pathogenic fungi. Annu Rev Phytopathol 2014, 52:427-451.
- [21]Saloheimo M, Pakula TM: The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 2012, 158:46-57.
- [22]Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, et al.: Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009, 106:16151-16156.
- [23]Vitikainen M, Arvas M, Pakula T, Oja M, Penttila M, Saloheimo M: Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genom 2010, 11:441. BioMed Central Full Text
- [24]Sun J, Glass NL: Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 2011, 6:e25654.
- [25]Vogel HJ: A convenient growth medium for Neurospora. Microbiol Genet Bull 1956, 13:42-46.
- [26]Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, et al.: A new Zn(II)(2)Cys(6)-type transcription factor BglR regulates beta-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 2012, 49:388-397.
- [27]Xiong Y, Sun J, Glass NL: VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation in Neurospora crassa. PLoS Genet 2014, 10:e1004500.
- [28]Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M: Deletion and expression analysis of beta-(1,3)-glucanosyltransferase genes in Neurospora crassa. Fungal Genet Biol 2013, 52:65-72.
- [29]Lew RR, Abbas Z, Anderca MI, Free SJ: Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa. Eukaryot Cell 2008, 7:647-655.
- [30]Keeping A, Deabreu D, Dibernardo M, Collins RA: Gel-based mass spectrometric and computational approaches to the mitochondrial proteome of Neurospora. Fungal Genet Biol 2011, 48:526-536.
- [31]Hartmann-Petersen R, Semple CA, Ponting CP, Hendil KB, Gordon C: UBA domain containing proteins in fission yeast. Int J Biochem Cell Biol 2003, 35:629-636.
- [32]Stewart EV, Nwosu CC, Tong Z, Roguev A, Cummins TD, Kim DU, et al.: Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. Mol Cell 2011, 42:160-171.
- [33]Madden K, Snyder M: Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 1998, 52:687-744.
- [34]Roumanie O, Wu H, Molk JN, Rossi G, Bloom K, Brennwald P: Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J Cell Biol 2005, 170:583-594.
- [35]Meiling-Wesse K, Epple UD, Krick R, Barth H, Appelles A, Voss C, et al.: Trs85 (Gsg1), a component of the TRAPP complexes, is required for the organization of the preautophagosomal structure during selective autophagy via the Cvt pathway. J Biol Chem 2005, 280:33669-33678.
- [36]Stone PJ, Makoff AJ, Parish JH, Radford A: Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa. Curr Genet 1993, 24:205-211.
- [37]Lloyd SJ, Raychaudhuri S, Espenshade PJ: Subunit architecture of the Golgi Dsc E3 ligase required for sterol regulatory element-binding protein (SREBP) cleavage in fission yeast. J Biol Chem 2013, 288:21043-21054.
- [38]Willger SD, Cornish EJ, Chung D, Fleming BA, Lehmann MM, Puttikamonkul S, et al.: Dsc orthologs are required for hypoxia adaptation, triazole drug responses, and fungal virulence in Aspergillus fumigatus. Eukaryot Cell 2012, 11:1557-1567.
- [39]Bowman BJ, Draskovic M, Freitag M, Bowman EJ: Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. Eukaryot Cell 2009, 8:1845-1855.
- [40]Kubicek CP: Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J Biotechnol 2012, 163:133-142.
- [41]Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, et al.: High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 2010, 638:33-40.
- [42]Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P, et al.: Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryot Cell 2011, 10:1553-1564.
- [43]Hughes AL, Todd BL, Espenshade PJ: SREBP pathway responds to sterols and functions as an oxygen sensor in fission yeast. Cell 2005, 120:831-842.
- [44]Bien CM, Espenshade PJ: Sterol regulatory element binding proteins in fungi: hypoxic transcription factors linked to pathogenesis. Eukaryot Cell 2010, 9:352-359.
- [45]Stewart EV, Lloyd SJ, Burg JS, Nwosu CC, Lintner RE, Daza R, et al.: Yeast sterol regulatory element-binding protein (SREBP) cleavage requires Cdc48 and Dsc5, a ubiquitin regulatory X domain-containing subunit of the Golgi Dsc E3 ligase. J Biol Chem 2012, 287:672-681.
- [46]Blatzer M, Barker BM, Willger SD, Beckmann N, Blosser SJ, Cornish EJ, et al.: SREBP coordinates iron and ergosterol homeostasis to mediate triazole drug and hypoxia responses in the human fungal pathogen Aspergillus fumigatus. PLoS Genet 2011, 7:e1002374.
- [47]Chung D, Barker BM, Carey CC, Merriman B, Werner ER, Lechner BE, et al.: ChIP-seq and in vivo transcriptome analyses of the Aspergillus fumigatus SREBP SrbA reveals a new regulator of the fungal hypoxia response and virulence. PLoS Pathog 2014, 10:e1004487.
- [48]Griffiths B, Lewis CA, Bensaad K, Ros S, Zhang Q, Ferber EC, et al.: Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab 2013, 1:3. BioMed Central Full Text
- [49]Bardiya N, Shiu PK: Cyclosporin A-resistance based gene placement system for Neurospora crassa. Fungal Genet Biol 2007, 44:307-314.
- [50]Freitag M, Hickey PC, Raju NB, Selker EU, Read ND: GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 2004, 41:897-910.
- [51]Catlett NL, Lee B-N, Yoder O, Turgeon BG: Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newslett 2003, 50:9-11.
- [52]Qin LN, Cai FR, Dong XR, Huang ZB, Tao Y, Huang JZ, et al.: Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresour Technol 2012, 109:116-122.
- [53]Penttila M, Nevalainen H, Ratto M, Salminen E, Knowles J: A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 1987, 61:155-164.
- [54]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
- [55]Edgar RC: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004, 5:113. BioMed Central Full Text
- [56]Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013, 30:2725-2729.