期刊论文详细信息
Chemistry Central Journal
A reactivity-selectivity study of the Friedel-Crafts acetylation of 3,3′-dimethylbiphenyl and the oxidation of the acetyl derivatives
Ole Hammerich3  Hanna S Abbo1  Fadhil S Kamounah2  Salam JJ Titinchi1 
[1]Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville, 7535, South Africa
[2]CISMI, Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, P.O. Box 260, Roskilde, DK-4000, Denmark
[3]Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark
关键词: DFT calculations;    Carboxylic acids;    Diacetylation;    Monoacetylation;    3,3′-dimethylbiphenyl;    Friedel-Crafts reaction;   
Others  :  788135
DOI  :  10.1186/1752-153X-6-52
 received in 2012-02-25, accepted in 2012-05-08,  发布年份 2012
PDF
【 摘 要 】

Background

Friedel-Crafts acetylation is an important route to aromatic ketones, in research laboratories and in industry. The acetyl derivatives of 3,3′-dimethylbiphenyl (3,3′-dmbp) have applications in the field of liquid crystals and polymers and may be oxidized to the dicarboxylic acids and derivatives that are of interest in cancer treatment.

Findings

The effect of solvent and temperature on the selectivity of monoacetylation of 3,3’-dmbp by the Perrier addition procedure was studied using stoichiometric amounts of reagents. 4-Ac-3,3′-dmbp was formed almost quantitatively in boiling 1,2-dichloroethane and this is almost twice the yield hitherto reported. Using instead a molar ratio of substrate:AcCl:AlCl3 equal to 1:4:4 or 1:6:6 in boiling 1,2-dichloroethane, acetylation afforded 4,4′- and 4,6′-diacetyl-3,3′-dmbp in a total yield close to 100%. The acetyl derivatives were subsequently converted to the carboxylic acids by hypochlorite oxidation. The relative stabilities of the isomeric products and the corresponding σ-complexes were studied by DFT calculations and the data indicated that mono- and diacetylation followed different mechanisms.

Conclusions

Friedel-Crafts acetylation of 3,3′-dmbp using the Perrier addition procedure in boiling 1,2-dichloroethane was found to be superior to other recipes. The discrimination against the 6-acetyl derivative during monoacetylation seems to reflect a mechanism including an AcCl:AlCl3 complex or larger agglomerates as the electrophile, whereas the less selective diacetylations of the deactivated 4-Ac-3,3′-dmbp are suggested to include the acetyl cation as the electrophile. The DFT data also showed that complexation of intermediates and products with AlCl3 does not seem to be important in determining the mechanism.

【 授权许可】

   
2012 Titinchi et al.; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140703103146451.pdf 364KB PDF download
Scheme 3 30KB Image download
Scheme 2 12KB Image download
Scheme 1 18KB Image download
【 图 表 】

Scheme 1

Scheme 2

Scheme 3

【 参考文献 】
  • [1]Gore PH: Aromatic ketone synthesis. In Friedel-Crafts and related reactions. Edited by Olah GA. New York: Interscience Publ; 1964:1-381.
  • [2]Olah GA: Friedel-Crafts Chemistry. New York: Wiley Interscience; 1973.
  • [3]Olah GA, Reddy VP, Prakash GKS: Kirk-Othmer Encyclopedia of Chemical Technology. Volume 12. 5th edition. Hoboken: Wiley; 2005.
  • [4]Heaney H: The Bimolecular Aromatic Friedel-Crafts Reaction. In Comprehensive Organic Synthesis. Edited by Trost BM, Fleming I. Oxford: Pergamon Press; 1991:733-752.
  • [5]Kurti L, Czako B: Strategic Applications of Named Reactions in Organic Synthesis. Burtington, MA: Elsevier Academic Press; 2005.
  • [6]Effenberger F, Maier AH: Changing the ortho/para ratio in aromatic acylation reactions by changing reaction conditions: a mechanistic explanation from kinetic measurements. J Am Chem Soc 2001, 123:3429-3433.
  • [7]Csihony S, Mehdi H, Homonnay Z, Vértes A, Farkas O, Horváth IT: In situ spectroscopic studies related to the mechanism of the Friedel-Crafts acetylation of benzene in ionic liquids using AlCl3 and FeCl3. J Chem Soc Dalton Trans 2002, 680-685.
  • [8]Davlieva MG, Lindeman SV, Neretin IS, Kochi JK: Isolation, X-ray structures, and electronic spectra of reactive intermediates in Friedel-Crafts acylations. J Org Chem 2005, 70:4013-4021.
  • [9]Meneses L, Fuentealba P, Contreras R: Relationship between the electrophilicity of substituting agents and substrate selectivity in Friedel-Crafts reactions. Tetrahedron 2005, 61:831-836.
  • [10]Sartori G, Maggi R: Use of solid catalysts in Friedel-Crafts acylation reactions. Chem Rev 2006, 106:1077-1104.
  • [11]Titinchi SJJ, Kamounah FS, Abbo HS: Preparation of mono- and diacetyl 4,4′-dimethylbiphenyl and their corresponding carboxylic acids: Reactivity, selectivity and isomer distribution studies via Lewis acid catalyzed Friedel-Crafts acetylation/oxidation. J Mol Catal A 2007, 273:169-176.
  • [12]Levy L, Pogodin S, Cohen S, Agranat I: Reversible friedel-crafts acylations of phenanthrene: Rearrangements of acetylphenanthrenes. Lett Org Chem 2007, 4:314-318.
  • [13]Titinchi SJJ, Kamounah FS, Abbo HS, Hammerich O: The synthesis of mono-and diacetyl-9 H-fluorenes. Reactivity and selectivity in the Lewis acid catalyzed FriedelCrafts acetylation of 9 H-fluorene. ARKIVOC 2008, 13:91-105.
  • [14]Mala’bi T, Pogodin S, Agranat I: Reversible Friedel-Crafts acylations of anthracene: Rearrangements of acetylanthracenes. Lett Org Chem 2009, 6:237-241.
  • [15]Yamabe S, Yamazaki S: A remarkable difference in the deprotonation steps of the Friedel-Crafts acylation and alkylation reactions. J Phys Org Chem 2009, 22:1094-1103.
  • [16]Sartori G, Maggi R: Advances in Friedel-Crafts Acylation Reactions: Catalytic and Green Processes. Boca Raton: CRC Press; 2010.
  • [17]Olah GA, Kobayashi S: Aromatic substitution. XXIX. Friedel-Crafts acylation of benzene and toluene with substituted acyl halides. Effect of substituents on substrate and positional selectivity. J Am Chem Soc 1971, 93:6964-6967.
  • [18]Andreou AD, Bulbulian RV, Gore PH: Friedel-Crafts acetylation of durene, isodurene and prehnitene. Tetrahedron 1980, 36:2101-2104.
  • [19]Tan LK, Brownstein S: Equilibria and reactions in the systems aluminum chloride-acetyl chloride-aromatic hydrocarbon in sulfur dioxide as solvent. J Org Chem 1983, 48:302-306.
  • [20]Brown HC, Marino G: Rate data and isomer distributions in aluminum chloride-catalyzed acetylation and benzoylation of biphenyl and fluorene in ethylene dichloride. J Am Chem Soc 1962, 84:1236-1238.
  • [21]Andreou AD, Bulbulian RV, Gore PH, Kamounah FS, Miri AY, Waters DN: The Friedel-Crafts acetylation of naphthalene. Evidence for concurrent second- and third-order reactions. J Chem Soc Perkin Trans 1981, 2:376-378.
  • [22]Gore PH: The Friedel-Crafts acetylation of naphthalene. Z Phys Chem 1988, 159:123-128.
  • [23]Dowdy D, Gore PH, Waters DN: The Friedel-Crafts acetylation of naphthalene in 1,2-dichloroethane solution. Kinetics and mechanism. J Chem Soc Perkin Trans 1991, 2:1149-1159.
  • [24]Gore PH, Thadani CK: Formation of mono- and diketones in the Friedel-Crafts acetylation of anthracene. J Chem Soc C: Org 1966, 1729-1733.
  • [25]Perin F, Croisy-Delcey M, Jacquignon P: Friedel-Crafts polycyclic aromatic hydrocarbon acylation reactions. IX. Acetylation of anthracene and its meso-methyl homologs. Can J Chem 1976, 54:1777-1788.
  • [26]Girdler RB, Gore PH, Thadani CK: The Friedel-Crafts acetylation of phenanthrene. J Chem Soc C: Org 1967, 2619-2624.
  • [27]Minabe M, Takeshige S, Soeda Y, Kimura T, Tsubota M: Electrophilic substitution of monosubstituted pyrenes. Bull Chem Soc Jpn 1994, 67:172-179.
  • [28]Gore PH, Kamounah FS, Miri AY: Friedel-Crafts acetylations of two benzophenanthrenes. A study of relative rates of substitution of naphthalene, phenanthrene, chrysene, and triphenylene. J Chem Res (Synopses) 1980, 40:0530-0548.
  • [29]Al-Ka’bi J, Gore PH, Moonga B, Al-Shiebani IS, Shibaldain NL, Kamounah FS: The Friedel-Crafts acylation of 1-methoxy-3,5-dimethylbenzene and the kinetics of protiodeacylation of the ketones thus obtained. J Chem Res (Synopses) 1986, 246-247.
  • [30]Kamounah FS, Titinchi SJJ: 1 H-NMR study of some new acetyl dimethylbiphenyls: unambiguous signal assignment for the methyl groups. Spectroscopy 1997, 13:125-129.
  • [31]Tobolsky AV, Samulski EJ: Solid ‘liquid-crystalline’ films of synthetic polypeptides. New state of matter. Adv Chem Phys 1971, 21:529-535.
  • [32]Shiotani A, Washio K: Preparation of polyamides containing para-linked dimethylbiphenylene moieties. J Appl Polym Sci 1998, 68:847-853.
  • [33]Kim J-H, Kimura M, Higashi F: Thermotropic copolyamides from triethylene glycol bis(4-carboxyphenyl) ether and o-tolidine modified by kinking monomers. J Polym Sci A Polym Chem 1999, 37:363-368.
  • [34]Kettunen M, Vedder C, Brintzinger H-H, Mutikainen I, Leskela M, Repo T: Alternative coordination modes in palladium(II)-diimino-bispyridine complexes with an axially chiral biphenyl backbone. Eur J Inorg Chem 2005, 1081-1089.
  • [35]Cook JW: Polycyclic aromatic hydrocarbons. IV. Condensed derivatives of 1,2-benzanthracene. J Chem Soc 1931, 499-507.
  • [36]Dovgosheya MI, Krasovitskii BM: Some biphenyl derivatives as vinyl monomers. Zhur Org Khim 1966, 2:1288-1291.
  • [37]Kotlyarevskii IL, Shvartsberg MS, Volgina GI, Vasilevskii SF: Synthesis of acetylene derivatives of diphenyl oxide and metabitolyl. Izv Akad Nauk SSSR Ser Khim 1965, 1704-1706.
  • [38]de la Mare PBD, Hall DM, Harris MM, Hassan M, Johnson EA, Klassen NV: The kinetics and mechanisms of aromatic halogen substitution. XIV. Rates and products of chlorination of methyl-substituted biphenyls in acetic acid. J Chem Soc 1962, 3784-3796.
  • [39]Wirth HO, Königstein O, Kern W: Iodination of aromatic compounds with iodine and iodic acid. Justus Liebigs Ann Chem 1960, 634:84-104.
  • [40]Kortekaas TA, Cerfontain H: Aromatic sulfonation. Part 66. Sulfonation of some biphenyl derivatives. J Chem Soc Perkin Trans II:Phys Org Chem 1979, 224-227.
  • [41]Clark JH, Miller JM: Hydrogen bonding in organic synthesis. Part 6. Intermolecular self-condensation of some enolisable ketones in the presence of fluoride. J Chem Soc Perkin Trans1:Org Bio-Org Chem 1977, 2063-2069.
  • [42]Kamounah FS, Al-Sheibani I, Shibaldain NL, Salman SR: Proton magnetic resonance studies of substituted 3,5-dimethylbenzenes: influence of substituents on the methyl proton chemical shifts. Magn Reson Chem 1985, 23:521-523.
  • [43]Jackman LM, Sternhell S: Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry. 2nd edition. Oxford: Pergamon Press; 1969:546.
  • [44]Fiedler P, Exner O: Conformation of aromatic carbonyl derivatives: an infrared study. Collect Czech Chem Commun 2004, 69:797-810.
  • [45]Tan LK, Brownstein S: Initial products in Friedel-Crafts reactions. J Org Chem 1983, 48:3389-3393.
  • [46]Maier JP, Turner DW: Steric inhibition of resonance studied by molecular photoelectron spectroscopy. 1. Biphenyls. Faraday Disc Chem Soc 1972, 54:149-167.
  • [47]Modelli A, Distefano G, Jones D: Application of electron transmission spectroscopy to conformational studies: electron affinities of methyl-substituted biphenyls. Chem Phys 1983, 82:489-492.
  • [48]Dynes JJ, Baudais FL, Boyd RK: Inter-ring dihedral angles in polychlorinated biphenyls from photoelectron spectroscopy. Can J Chem 1985, 63:1292-1299.
  • [49]Roberts RMG: Conformational analysis of biphenyls using carbon-13 NMR spectroscopy. Magn Res Chem 1985, 23:52-54.
  • [50]Bates RB, Camou FA, Kane VV, Mishra PK, Suvannachut K, White JJ: Preparations and reactions of symmetrical dimethylenebiphenyl dianions; conformations of [O.n]-o-cyclophanes. A simple NMR method for determining twist angles in biphenyls. J Org Chem 1989, 54:311-317.
  • [51]Wallace KJ, Hanes R, Anslyn E, Morey J, Kilway KV, Siegel J: Preparation of 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene from two versatile 1,3,5-tri(halo-substituted) 2,4,6-triethylbenzene derivatives. Synthesis 2005, 12:2080-2083.
  • [52]Cadogan JIG, Molina GAA: Simple and convenient deamination of aromatic amines. Org Bio-Org Chem: J Chem Soc Perkin Trans I 1973, 541-542.
  • [53]Shoesmith JB, Slater RH: Polarity effects in the isomeric α-bromoxylenes and isomeric iodotoluenes. J Chem Soc 1924, 125:2278-2283.
  • [54]Kornblum N, Kendall DL: The use of dimethylformamide in the Ullmann reaction. J Am Chem Soc 1952, 74:5782.
  • [55]Ehmer A, Jahr K, Kuschinsky G, Luellmann H, Mutschler E, Wollert U: Cardiac activity of simple bis(guanylhydrazones). Arzneimittel-Forschung 1964, 14:1273-1277.
  • [56]Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA: Gaussian 03, version Revision B.05. Wallingford CT: Gaussian, Inc; 2004.
  • [57]Boehm S, Gal J-F, Maria P-C, Kulhánek J, Exner O: Steric effects in isolated molecules: gas-phase basicity of methyl-substituted acetophenones. Eur J Org Chem 2005, 2580-2588.
  文献评价指标  
  下载次数:75次 浏览次数:37次