期刊论文详细信息
Chemistry Central Journal
Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties
Mansour S Al-Said2  Mostafa M Ghorab2  Yassin M Nissan1 
[1] Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
[2] Medicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, 2457, Riyadh, 11451, Saudi Arabia
关键词: Anticancer activity;    Pyridnochromenes;    Chromenes;    Pyridines;    Sulfone;   
Others  :  788112
DOI  :  10.1186/1752-153X-6-64
 received in 2012-04-14, accepted in 2012-06-07,  发布年份 2012
PDF
【 摘 要 】

Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3–19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

【 授权许可】

   
2012 Al-Said et al; licensee Chemistry Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140703102348139.pdf 1029KB PDF download
Figure 4. 64KB Image download
Figure 3. 78KB Image download
Figure 2. 76KB Image download
Figure 1. 33KB Image download
Scheme 4 10KB Image download
Scheme 3 12KB Image download
Scheme 2 9KB Image download
Scheme 1 9KB Image download
【 图 表 】

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Cocco MT, Congiu C, Onnis V: Synthesis and antitumour activity of 4-hydroxy-2-pyridone derivatives. Euro J of Med Chem 2000, 35:545-552.
  • [2]Fan N, Evans DB, Rank KB, Thomas RC, Tarpley WG, Sharma SK: Mechanism of resistance to U-90152 S and sensitization to L-697,661 by a proline to leucine change at residue 236 of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. FEBS Lett 1995, 359:233-238.
  • [3]Emini EA, Staszewski S, Schneider CL, Waterbury JA, Schleif WA, Goehler R, Deussen A, Duerr S, Massari FE, Calandra GB, Hoffstedt B, Byrnes VW: 94 Combination therapy with AZT prevents selection of HIV-1 variants that are highly resistant to the nonnucleoside reverse transcriptase inhibitor L-697, 661. Antiviral Res 1993, 20:94.
  • [4]Van Der Zypp A, Rechtman M, Majewski H: The role of cyclic nucleotides and calcium in the relaxation produced by amrinone in rat aorta. Gen Pharmacol 2000, 34:245-253.
  • [5]Rechtman MP, Van Der Zypp A, Majewski H: Amrinone reduces ischaemia-reperfusion injury in rat heart. Eur J Pharmacol 2000, 402:255-262.
  • [6]Jeremy JY, Gill J, Mikhailidis D: Effect of milrinone on thromboxane A2 synthesis, cAMPphosphodiesterase and 45Ca2+ uptake by human platelets. Eur J Pharmacol 1993, 245:67-73.
  • [7]Raffaeli S, Ferroni C, Spurgeon HA, Capogrossi MC: Milrinone enhances cytosolic calcium transient and contraction in rat cardiac myocytes during beta-adrenergic stimulation. Int J Cardiol 1989, 25:S63-S69.
  • [8]Card JW, Racz WJ, Brien JF, Margolin SB, Massey TE: Differential effects of pirfenidone on acute pulmonary injury and ensuing fibrosis in the hamster model of amiodarone-induced pulmonary toxicity. Toxicological sciences an official journal of the Society of Toxicology 2003, 75:169-180.
  • [9]Kehrer JP, Margolin SB: Pirfenidone diminishes cyclophosphamide-induced lung fibrosis in mice. Toxicol Lett 1997, 90:125-132.
  • [10]Card JW, Lalonde BR, Rafeiro E, Tam AS, Racz WJ, Brien JF, Bray TM, Massey TE: Amiodarone-induced disruption of hamster lung and liver mitochondrial function: lack of association with thiobarbituric acid-reactive substance production. Toxicol Lett 1998, 98:41-50.
  • [11]Giri SN, Schwartz LW, Hollinger MA, Freywald ME, Schiedt MJ, Zuckerman JE: Biochemical and structural alterations of hamster lungs in response to intratracheal administration of bleomycin. Exp Mol Pathol 1980, 33:1-14.
  • [12]Iyer SN, Wild JS, Schiedt MJ, Hyde DM, Margolin SB, Giri SN: Dietary intake of pirfenidone ameliorates bleomycin-induced lung fibrosis in hamsters. J Lab Clin Med 1995, 125:779-785.
  • [13]Iyer SN, Gurujeyalakshmi G, Giri SN: Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther 1999, 291:367-373.
  • [14]Iyer SN, Hyde DM, Giri SN: Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammation. Inflamm 2000, 24:477-491.
  • [15]Selman M, King TE, Pardo A: Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001, 134:136-151.
  • [16]Kakugawa T, Mukae H, Hayashi T, Ishii H, Abe K, Fujii T, Oku H, Miyazaki M, Kadota J, Kohno S: Pirfenidone attenuates expression of HSP47 in murine bleomycin-induced pulmonary fibrosis. Eur Respir J 2004, 24:57-65.
  • [17]Pemberton N, Pinkner JS, Jones JM, Jakobsson L, Hultgren SJ, Almqvist F: Bicyclic 2-pyridone targeting pilus biogenesis in uropathogenic E coli. Tetrahedron Lett 2007, 48:4543-4546.
  • [18]Hamdy NA, Gamal-Eldeen AM: New pyridone, thioxopyridine, pyrazolopyridine and pyridine derivatives that modulate inflammatory mediators in stimulated RAW 264.7 murine macrophage. Eur J Med Chem 2009, 44:4547-4556.
  • [19]Li Q, Wang W, Berst KB, Claiborne A, Hasvold L, Raye K, Tufano M, Nilius A, Shen LL, Flamm R, Alder J, Marsh K, Crowell D, Chu DT, Plattner J: Synthesis and structure-activity relationships of 2-pyridones: II. 8-(Fluoro-substituted pyrrolidinyl)-2-pyridones as antibacterial agents. Bioorg Med Chem Lett 1998, 8:1953-1958.
  • [20]Vegi SR, Boovanahalli SK, Patro B, Mukkanti K: SPF32629A and SPF32629B: enantioselective synthesis, determination of absolute configuration, cytotoxicity and antibacterial evaluation. Eur J Med Chem 2011, 44:1803-1812.
  • [21]Dominguez JN, Leon C, Rodrigues J, Gamboa De Dominguez N, Gut J, Rosenthal PJ: Synthesis of chlorovinylsulfones as structural analogs of chalcones and their antiplasmodial activities. Eur J Med Chem 2009, 44:1457-1462.
  • [22]Szilágyi G, Somorai T, Bozó É, Langó J, Nagy G, Reiter J, Janáky J: Preparation and antiarthritic activity of new 1,5-diaryl-3-alkylthio-1 H-1,2,4-triazoles and corresponding sulfoxides and sulfones. H-1,2,4-triazoles and corresponding sulfoxides and sulfones. Eur J Med Chem 1990, 25:95-101.
  • [23]Santelli-Rouvier C, Barret JM, Farrell CM, Sharples D, Hill BT, Barbe J: Synthesis of 9-acridinyl sulfur derivatives: sulfides, sulfoxides and sulfones. Comparison of their activity on tumour cells. Eur J Med Chem 2004, 39:1029-1038.
  • [24]Murafuji T, Fujiwara Y, Yoshimatsu D, Miyakawa I, Migita K, Mikata Y: Bismuth heterocycles based on a diphenylsulfone scaffold: synthesis and substituent effect on the antifungal activity against Saccharomyces cerevisiae. Eur J Med Chem 2011, 46:519-525.
  • [25]Usera AR, Dolan P, Kensler TW, Posner GH: Novel alkyl side chain sulfone 1alpha,25-dihydroxyvitamin D3 analogs: a comparison of in vitro antiproliferative activities and in vivo calcemic activities. Bioorg Med Chem 2009, 17:5627-5631.
  • [26]Badal S, Williams SA, Huang G, Francis S, Vendantam P, Dunbar O, Jacobs H, Tzeng TJ, Gangem J, Delgoda R: Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from Amyrisplumieri. Fitoterapia 2011, 82:230-236.
  • [27]Endo S, Matsunaga T, Kuwata K, Zhao HT, El-Kabbani O, Kitade Y, Hara A: Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorg Med Chem 2010, 18:2485-2490.
  • [28]Heo SJ, Kim KN, Yoon WJ, Oh C, Choi YU, Affan A, Lee YJ, Lee HS, Kang DH: Chromene induces apoptosis via caspase-3 activation in human leukemia HL-60 cells. Food Chem Toxico 2011, 49:1998-2004.
  • [29]Rao RN, Suman P, Yogeeswari P, Sriram D, Basha T, Vardhan S: Synthesis, structure-activity relationship of novel substituted 4 H-chromen-1,2,3,4-tetrahydropyrimidine-5-carboxylates as potential anti-mycobacterial and anticancer agents. Bioorg & Med Chem Lett 2011, 21:2855-2859.
  • [30]Santelli-Rouvier C, Barret JM, Farrell CM, Sharples D, Hill BT, Barbe J: Synthesis of 9-acridinyl sulfur derivatives: sulfides, sulfoxides and sulfones. Comparison of their activity on tumour cells. Eur J Med Chem 2004, 39:1029-1038.
  • [31]El-Sayed AT: Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur J Med Chem 2009, 44:4385-92.
  • [32]Onnis V, Cocco MT, Fadda R, Congiu C: Synthesis and evaluation of anticancer activity of 2-arylamino-6-trifluoromethyl-3-(hydrazonocarbonyl)pyridines. Bioorg Med Chem 2009, 17:6158-65.
  • [33]Karki R, Thapa P, Kang MJ, Jeong TC, Nam JM, Kim HL, Na Y, Cho WJ, Kwon Y, Lee ES: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure-activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines. Bioorg Med Chem 2010, 18:3066-77.
  • [34]Gomez-Monterrey I: New benzo[g]isoquinoline-5,10-diones and dihydrothieno [2,3-b]naphtho-4,9-dione derivatives Synthesis and biological evaluation as potential antitumoral agents. Bioorg Med Chem 2003, 11:3769-3775.
  • [35]Valderrama JA, González MF, Pessoa-Mahana D, Tapia RA, Fillion H, Pautet F, Rodriguez JA, Theoduloz C, Schmeda-Hirschmann G: Studies on quinones. Part 41: synthesis and cytotoxicity of isoquinoline-containing polycyclic quinones. Bioorg Med Chem 2006, 14:5003-5011.
  • [36]Kast RE, Scheuerle A, Wirtz CR, Karpel-Massler G: The Rationale of Targeting Neutrophils with Dapsone during Glioblastoma Treatment. Anticancer Agents Med Chem 2011, 11:756-761.
  • [37]Bissinger EM, Heinke R, Spannhoff A, Eberlin A, Metzger E, Cura V, Hassenboehler P, Cavarelli J, Schüle R, Bedford MT, Sippl W, Jung M: Acyl derivatives of p-aminosulfonamides and dapsone as new inhibitors of the arginine methyltransferase hPRMT1. Bioorg Med Chem 2011, 19:3717-3731.
  • [38]Ghorab MM, Radwan MAA, Taha NMH, Amin NE, Shehab MA, Faker IMI: Dapson in Heterocyclic Chemistry, Part I: Novel Synthesis of SulfoneBiscompounds for Antimicrobial and Antitumor Activities. Phosphorus, Sulfur, and Silicon and the Related Elements 2008, 183:2891-2905.
  • [39]Ghorab MM, Amin NE, El Gaby MSA, Taha NMH, Shehab MA, Faker IMI: Dapson in Heterocyclic Chemistry, Part III: Synthesis, Antimicrobial, and Antitumor Activities of Some New Bisheterocyclic Compounds Containing Biologically Active Diphenylsulfone Moiety. Phosphorus, Sulfur, and Silicon and the Related Elements 2008, 183:2918-2928.
  • [40]Ghorab MM, Amin NE, El Gaby MSA, Taha NMH, Shehab MA, Faker IMI: Dapson in Heterocyclic Chemistry, Part IV: Synthesis of Some Novel Diphenylsulfones Containing Acetamide, Pyrrolidine, Piperazine, and Thiomorpholine Moieties as Antimicrobial and Antitumor Agents. Phosphorus, Sulfur, and Silicon and the Related Elements 2008, 183:2929-2942.
  • [41]Ghorab MM, Radwan MAA, Taha NMH, Amin NE, Shehab MA, Faker IMI: Dapson in Heterocyclic Chemistry, Part II: Antimicrobial and Antitumor Activities of Some Novel SulfoneBiscompounds Containing Biologically Active Thioureido, Carbamothioate, Quinazoline, Imidazolidine, and Thiazole Moieties. Phosphorus, Sulfur, and Silicon and the Related Elements 2008, 183:2906-2917.
  • [42]Al-Said MS, Bashandy MS, Al-Qasoumi SI, Ghorab MM: Anti-breast cancer activity of some novel 1,2-dihydropyridine, thiophene and thiazole derivatives. Eur J Med Chem 2011, 46:137-41.
  • [43]Vojtek AB, Der CJ: Increasing complexity of the Rassignaling pathway. The Journal of Biological Chemistry 1998, 273:19925-19928.
  • [44]Liang PH, Ko TP, Wang AHJ: Structure, mechanism and function of prenyltransferases. The Federation of European Biochemical Societies Journal 2002, 269:3339-3354.
  • [45]Long SB, Casey PJ, Beese LS: Reaction path of protein farnesyltransferase at atomic resolution. Nat 2002, 419:645-650.
  • [46]Mazieres J, Pradines A, Favre G: Perspectives on farnesyltransferase inhibitors in cancer therapy. Cancer Lett 2004, 206:159-167.
  • [47]Hunt JT, Lee VG, Leftheris K, Seizinger B, Carboni J, Mabus J, Ricca C, Yan N, Manne V: Potent, cell active, non-thioltetrapeptide inhibitors of farnesyltransferase. J Med Chem 1996, 39:353-358.
  • [48]Adjei AA: Farnesyltransferase inhibitors. Cancer Chemother Biol Response Modif 2001, 3:161-162.
  • [49]Crul M, De Klerk GJ, Beijnen JH, Schellens JH: Ras biochemistry and farnesyltransferase inhibitors: a literature survey. Anticancer drugs 2001, 12:163-184.
  • [50]Scorilas A, Black MH, Talieri M, Diamandis EP: Genomic organization, physical mapping, and expression analysis of the human protein arginine methyltransferase 1 gene. Biochem Biophys Res Commun 2000, 260:466-474.
  • [51]Cheung N, Chan LC, Thompson A, Cleary ML, So CWE: Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007, 9:1208-1215.
  • [52]Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR: New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990, 82:1107-1112.
  文献评价指标  
  下载次数:78次 浏览次数:16次