期刊论文详细信息
Biotechnology for Biofuels
Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase
Matthias Frommhagen2  Stefano Sforza4  Adrie H Westphal3  Jaap Visser1  Sandra W A Hinz1  Martijn J Koetsier1  Willem J H van Berkel3  Harry Gruppen2  Mirjam A Kabel2 
[1] Dyadic Netherlands, Nieuwe Kanaal 7-S, Wageningen, 6709 PA, The Netherlands
[2] Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, Wageningen, 6708 WG, The Netherlands
[3] Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
[4] Department of Food Science, University of Parma, Parco Area delle Scienze 59a, University Campus, Parma, 43124, Italy
关键词: Xylan;    Myceliophthora thermophila C1;    Endoglucanase;    Cellulose;    LPMO;    Biorefinery;   
Others  :  1221328
DOI  :  10.1186/s13068-015-0284-1
 received in 2015-04-07, accepted in 2015-07-08,  发布年份 2015
PDF
【 摘 要 】

Background

Many agricultural and industrial food by-products are rich in cellulose and xylan. Their enzymatic degradation into monosaccharides is seen as a basis for the production of biofuels and bio-based chemicals. Lytic polysaccharide monooxygenases (LPMOs) constitute a group of recently discovered enzymes, classified as the auxiliary activity subgroups AA9, AA10, AA11 and AA13 in the CAZy database. LPMOs cleave cellulose, chitin, starch and β-(1 → 4)-linked substituted and non-substituted glucosyl units of hemicellulose under formation of oxidized gluco-oligosaccharides.

Results

Here, we demonstrate a new LPMO, obtained from Myceliophthora thermophila C1 (MtLPMO9A). This enzyme cleaves β-(1 → 4)-xylosyl bonds in xylan under formation of oxidized xylo-oligosaccharides, while it simultaneously cleaves β-(1 → 4)-glucosyl bonds in cellulose under formation of oxidized gluco-oligosaccharides. In particular, MtLPMO9A benefits from the strong interaction between low substituted linear xylan and cellulose. MtLPMO9A shows a strong synergistic effect with endoglucanase I (EGI) with a 16-fold higher release of detected oligosaccharides, compared to the oligosaccharides release of MtLPMO9A and EGI alone.

Conclusion

Now, for the first time, we demonstrate the activity of a lytic polysaccharide monooxygenase (MtLPMO9A) that shows oxidative cleavage of xylan in addition to cellulose. The ability of MtLPMO9A to cleave these rigid regions provides a new paradigm in the understanding of the degradation of xylan-coated cellulose. In addition, MtLPMO9A acts in strong synergism with endoglucanase I. The mode of action of MtLPMO9A is considered to be important for loosening the rigid xylan–cellulose polysaccharide matrix in plant biomass, enabling increased accessibility to the matrix for hydrolytic enzymes. This discovery provides new insights into how to boost plant biomass degradation by enzyme cocktails for biorefinery applications.

【 授权许可】

   
2015 Frommhagen et al.

【 预 览 】
附件列表
Files Size Format View
20150730000229196.pdf 2770KB PDF download
Figure6. 30KB Image download
Figure5. 64KB Image download
Figure4. 73KB Image download
Figure3. 63KB Image download
Figure2. 87KB Image download
Figure1. 45KB Image download
【 图 表 】

Figure1.

Figure2.

Figure3.

Figure4.

Figure5.

Figure6.

【 参考文献 】
  • [1]Hinz SWA, Pouvreau L, Joosten R, Bartels J, Jonathan MC, Wery J, et al.: Hemicellulase production in Chrysosporium lucknowense C1. J Cereal Sci 2009, 50(3):318-323.
  • [2]Vincken JP, de Keizer A, Beldman G, Voragen AGJ: Fractionation of xyloglucan fragments and their interaction with cellulose. Plant Physiol 1995, 108(4):1579-1585.
  • [3]Lam TBT, Kadoya K, Iiyama K: Bonding of hydroxycinnamic acids to lignin: ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 2001, 57(6):987-992.
  • [4]Kabel MA, Van den Borne H, Vincken JP, Voragen AGJ, Schols HA: Structural differences of xylans affect their interaction with cellulose. Carbohydr Polym 2007, 69(1):94-105.
  • [5]Carpita NC, Gibeaut DM: Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 1993, 3(1):1-30.
  • [6]Zhang YHP, Lynd LR: Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 2004, 88(7):797-824.
  • [7]Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S: Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A. 2011, 115(49):14191-14202.
  • [8]Mansfield SD, Mooney C, Saddler JN: Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnol Prog 1999, 15(5):804-816.
  • [9]Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C: New ether linked ferulic acid conferyl alcohol dimers identified in grass straws. J Agric Food Chem 1995, 43(10):2746-2751.
  • [10]Takahashi N, Koshijima T: Ester linkages between lignin and glucuronoxylan in a lignin-carbohydrate complex from beech (Fagus crenata) wood. Wood Sci Technol 1988, 22(231–241):231-241.
  • [11]Hoffman M, Jia Z, Peña MJ, Cash M, Harper A, Blackburn Ii AR, et al.: Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae. Carbohydr Res 2005, 340(11):1826-1840.
  • [12]Popper ZA, Fry SC: Primary cell wall composition of Bryophytes and Charophytes. Ann Bot 2003, 91(1):1-12.
  • [13]Bochicchio R, Reicher F: Are hemicelluloses from Podocarpus lambertii typical of gymnosperms? Carbohydr Polym 2003, 53(2):127-136.
  • [14]Capek P, Kubačková M, Alföldi J, Bilisics L, Lišková D, Kákoniová D: Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohydr Res 2000, 329(3):635-645.
  • [15]Vogel J: Unique aspects of the grass cell wall. Curr Opin Plant Biol 2008, 11(3):301-307.
  • [16]Smith BG, Harris PJ: The polysaccharide composition of Poales cell walls: Poaceae cell walls are not unique. Biochem Syst Ecol 1999, 27(1):33-53.
  • [17]Ebringerová A, Hromádková Z, Heinze T: Hemicellulose. Adv Polym Sci 2005, 186:1-67.
  • [18]Yang B, Wyman CE: Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 2004, 86(1):88-95.
  • [19]Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK: Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 2007, 98(1):112-122.
  • [20]CAZy (2014) Glycoside Hydrolase family classification. doi:www.cazy.org/Glycoside-Hydrolases.html. Accessed 27 Mar 2015
  • [21]Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 2013, 6:41. BioMed Central Full Text
  • [22]Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA: Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 2014, 136(2):562-565.
  • [23]Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, et al.: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 2014, 289(5):2632-2642.
  • [24]Agger JW, Isaksen T, Varnai A, Vidal-Melgosa S, Willats WG, Ludwig R, et al.: Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 2014, 111(17):6287-6292.
  • [25]Forsberg Z, Rohr AK, Mekasha S, Andersson KK, Eijsink VG, Vaaje-Kolstad G, et al.: Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 2014, 53(10):1647-1656.
  • [26]Lo Leggio L, Simmons TJ, Poulsen J-CN, Frandsen KEH, Hemsworth GR, Stringer MA, et al.: Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 2015.
  • [27]Vu VV, Beeson WT, Span EA, Farquhar ER, Marletta MA: A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA 2014, 111(38):13822-13827.
  • [28]Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, et al.: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 2011, 6(11):e27807.
  • [29]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, et al.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49(15):3305-3316.
  • [30]Hemsworth GR, Davies GJ, Walton PH: Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Curr Opin Struct Biol 2013, 23(5):660-668.
  • [31]Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6(12):1399-1406.
  • [32]Beeson WT, Phillips CM, Cate JH, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134(2):890-892.
  • [33]Kim S, Stahlberg J, Sandgren M, Paton RS, Beckham GT: Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci USA 2014, 111(1):149-154.
  • [34]Guillotin SE, Van Kampen J, Boulenguer P, Schols HA, Voragen AGJ: Degree of blockiness of amide groups as indicator for difference in physical behavior of amidated pectins. Biopolymers 2006, 82(1):29-37.
  • [35]Van Gool MP (2012) Targeted discovery and functional characterisation of complex-xylan degrading enzymes. PhD Thesis. Wageningen University, Wageningen
  • [36]Beldman G, Voragen AGJ, Rombouts FM, Searle-van Leeuwen MF, Pilnik W: Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride. Biotechnol Bioeng 1987, 30(2):251-257.
  • [37]Vincken J-P, Beldman G, Voragen AGJ: Substrate specificity of endoglucanases: what determines xyloglucanase activity? Carbohydr Res 1997, 298(4):299-310.
  • [38]Van Gool MP, van Muiswinkel GC, Hinz SW, Schols HA, Sinitsyn AP, Gruppen H: Two GH10 endo-xylanases from Myceliophthora thermophila C1 with and without cellulose binding module act differently towards soluble and insoluble xylans. Bioresour Technol 2012, 119:123-132.
  • [39]Van Gool MP, Vancsó I, Schols HA, Toth K, Szakacs G, Gruppen H: Screening for distinct xylan degrading enzymes in complex shake flask fermentation supernatants. Bioresour Technol 2011, 102(10):6039-6047.
  • [40]Visser H, Joosten V, Punt PJ, Gusakov AV, Olson PT, Joosten R, et al.: Development of a mature fungal technology and production platform for industrial enzymes based on a Myceliophthora thermophila isolate, previously known as Chrysosporium lucknowense C1. Ind Biotechnol 2011, 7:214-223.
  • [41]Punt PJ, Burlingame RP, Pynnonen CM, Olson PT, Wery J, Visser J, Heinrich et al (2010) Chrysosporium lucknowense protein production system. Patent WO/2010/107303
  • [42]Zhang YHP, Cui J, Lynd LR, Kuang LR: A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 2006, 7(2):644-648.
  • [43]Sali A: Comparative protein modeling by satisfaction of spatial restraints. Mol Med Today 1995, 1(6):270-277.
  • [44]Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, et al.: Comparative protein structure modeling using MODELLER. Curr Protocols Protein Sci 2007.
  文献评价指标  
  下载次数:79次 浏览次数:26次