| BMC Bioinformatics | |
| solGS: a web-based tool for genomic selection | |
| Isaak Y Tecle5  Jeremy D Edwards5  Naama Menda5  Chiedozie Egesi1  Ismail Y Rabbi4  Peter Kulakow4  Robert Kawuki3  Jean-Luc Jannink2  Lukas A Mueller5  | |
| [1] National Root Crops Research Institute (NRCRI), Umudike, Nigeria | |
| [2] USDA-ARS, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, USA | |
| [3] National Crops Resources Research Institute, Kampala, Uganda | |
| [4] International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria | |
| [5] Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA | |
| 关键词: Web-based tool; Database; Bioinformatics; RR-BLUP; Genomic selection; | |
| Others : 1084348 DOI : 10.1186/s12859-014-0398-7 |
|
| received in 2014-07-12, accepted in 2014-11-26, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Genomic selection (GS) promises to improve accuracy in estimating breeding values and genetic gain for quantitative traits compared to traditional breeding methods. Its reliance on high-throughput genome-wide markers and statistical complexity, however, is a serious challenge in data management, analysis, and sharing. A bioinformatics infrastructure for data storage and access, and user-friendly web-based tool for analysis and sharing output is needed to make GS more practical for breeders.
Results
We have developed a web-based tool, called solGS, for predicting genomic estimated breeding values (GEBVs) of individuals, using a Ridge-Regression Best Linear Unbiased Predictor (RR-BLUP) model. It has an intuitive web-interface for selecting a training population for modeling and estimating genomic estimated breeding values of selection candidates. It estimates phenotypic correlation and heritability of traits and selection indices of individuals. Raw data is stored in a generic database schema, Chado Natural Diversity, co-developed by multiple database groups. Analysis output is graphically visualized and can be interactively explored online or downloaded in text format. An instance of its implementation can be accessed at the NEXTGEN Cassava breeding database, http://cassavabase.org/solgs webcite.
Conclusions
solGS enables breeders to store raw data and estimate GEBVs of individuals online, in an intuitive and interactive workflow. It can be adapted to any breeding program.
【 授权许可】
2014 Tecle et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150113160836243.pdf | 1118KB | ||
| Figure 4. | 72KB | Image | |
| Figure 3. | 34KB | Image | |
| Figure 2. | 34KB | Image | |
| Figure 1. | 83KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Meuwissen TH, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157(4):1819-1829.
- [2]Goddard ME, Hayes BJ: Genomic selection. J Anim Breed Genet 2007, 124(6):323-330.
- [3]Nakaya A, Isobe SN: Will genomic selection be a practical method for plant breeding? Ann Bot 2012, 110(6):1303-1316.
- [4]Jannink JL, Lorenz AJ, Iwata H: Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 2010, 9(2):166-177.
- [5]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 2011, 6(5):e19379.
- [6]Heffner EL, Sorrells ME, Jannink J: Genomic selection for crop improvement. Crop Sci 2009, 49:1-12.
- [7]Ornella L, Perez P, Tapia E, Gonzalez-Camacho JM, Burgueno J, Zhang X, Singh S, Vicente FS, Bonnett D, Dreisigacker S, Singh R, Long N, Crossa J: Genomic-enabled prediction with classification algorithms. Heredity (Edinb) 2014, 112:616-626.
- [8]Endelman JB: Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 2011, 4:250-255.
- [9]Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de Los Campos G, Burgueno J, Windhausen VS, Buckler E, Jannink JL, Lopez Cruz MA, Babu R: Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 (Bethesda) 2013, 3(11):1903-1926.
- [10]Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME: Invited review: genomic selection in dairy cattle: progress and challenges. J Dairy Sci 2009, 92(2):433-443.
- [11]VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS: Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 2009, 92(1):16-24.
- [12]Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisigacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J: Genomic selection in wheat breeding using genotyping-by-sequencing. Crop Sci 2012, 5(3):103-113.
- [13]Wurschum T, Reif JC, Kraft T, Janssen G, Zhao Y: Genomic selection in sugar beet breeding populations. BMC Genet 2013, 14(85):85-2156-14-85.
- [14]Ly D, Hamblin M, Rabbi I, Melaku G, Bakare M, Gauch HGJ, Okechukwu R, Dixon AGO, Kulakow P, Jannink J: Relatedness and genotype × environment interaction affect prediction accuracies in genomic selection: a study in cassava. Crop Sci 2013, 53(4):1312-1325.
- [15]Jung S, Menda N, Redmond S, Buels RM, Friesen M, Bendana Y, Sanderson LA, Lapp H, Lee T, MacCallum B, Bett KE, Cain S, Clements D, Mueller LA, Main D: The Chado Natural Diversity module: a new generic database schema for large-scale phenotyping and genotyping data. Database (Oxford) 2011, 2011:bar051.
- [16]R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria; 2013.
- [17]Pinheiro J, Bates D, DebRoy S, Sarkar D: R Core Team: nlme: Linear and Nonlinear Mixed Effects Models. 2014.
- [18]Diment K, Trout MS: The Definitive Guide to Catalyst: Writing Extensible, Scalable, and Maintainable Perl-Based Web Applications. Apress, Berkeley, CA, USA; 2009.
- [19]Falconer DS, Mackay TF: Introduction to Quantitative Genetics. 4th edition. Longman Scientific & Technical, New York; 1996.
- [20]Park T, Casella G: The Bayesian Lasso. J Am Stat Assoc 2008, 103:681-686.
- [21]Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink J: Genomic selection in plant breeding: knowledge and propects. Adv Agron 2011, 110:77-123.
- [22]Jia Y, Jannink JL: Multiple-trait genomic selection methods increase genetic value prediction accuracy. Genetics 2012, 192(4):1513-1522.
- [23]Wiggans GR, VanRaden PM, Bacheller LR, Tooker ME, Hutchison JL, Cooper TA, Sonstegard TS: Selection and management of DNA markers for use in genomic evaluation. J Dairy Sci 2010, 93(5):2287-2292.
- [24]ISMU 2.0: A Pipeline for Genomic Selection. [https://pag.confex.com/pag/xxii/webprogram/Paper11074.html]
- [25]Bombarely A, Menda N, Tecle IY, Buels RM, Strickler S, Fischer-York T, Pujar A, Leto J, Gosselin J, Mueller LA: The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res 2011, 39(Database issue):D1149-D1155.
- [26]Jung S, Staton M, Lee T, Blenda A, Svancara R, Abbott A, Main D: GDR (Genome Database for Rosaceae): integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Res 2008, 36(Database issue):D1034-D1040.
- [27]The Cool Season Food Legume Database: An Integrated Resource for Basic, Translational and Applied Research. [https://pag.confex.com/pag/xxii/webprogram/Paper11249.html]
- [28]Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DS, Koscielny G, Louis C, Maccallum RM, Redmond SN, Sheehan A, Topalis P, Wilson D: VectorBase Consortium: VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 2012, 40(Database issue):D729-D734.
- [29]Menda N, Buels RM, Tecle I, Mueller LA: A community-based annotation framework for linking solanaceae genomes with phenomes. Plant Physiol 2008, 147(4):1788-1799.
- [30]Tecle IY, Menda N, Buels RM, van der Knaap E, Mueller LA: solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 2010, 11:525-2105. BioMed Central Full Text
PDF