期刊论文详细信息
Biotechnology for Biofuels
Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases
Adam J Book3  Ragothaman M Yennamalli1  Taichi E Takasuka2  Cameron R Currie3  George N Phillips1  Brian G Fox2 
[1] Current address: Biosciences at Rice, Rice University, George R. Brown Hall, Houston, TX 77005, USA
[2] Department of Biochemistry, University of Wisconsin-Madison, Biochemistry Addition, 433 Babcock Dr., Madison, WI 53706, USA
[3] Department of Bacteriology, University of Wisconsin-Madison, Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, USA
关键词: Biofuels;    Enzyme evolution;    AA10;    AA9;    Streptomyces;    Chitinase;    Cellulase;    LPMO;    Lytic polysaccharide monooxygenase;   
Others  :  1088660
DOI  :  10.1186/1754-6834-7-109
 received in 2014-03-14, accepted in 2014-07-07,  发布年份 2014
PDF
【 摘 要 】

Background

Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequences, structures, and evolution of LPMOs to understand the factors that may influence substrate specificity both within and between these enzyme families.

Results

Comparative analysis of sequences, solved structures, and homology models from AA9 and AA10 LPMO families demonstrated that, although these two LPMO families are highly conserved, structurally they have minimal sequence similarity outside the active site residues. Phylogenetic analysis of the AA10 family identified clades with putative chitinolytic and cellulolytic activities. Estimation of the rate of synonymous versus non-synonymous substitutions (dN/dS) within two major AA10 subclades showed distinct selective pressures between putative cellulolytic genes (subclade A) and CBP21-like chitinolytic genes (subclade D). Estimation of site-specific selection demonstrated that changes in the active sites were strongly negatively selected in all subclades. Furthermore, all codons in the subclade D had dN/dS values of less than 0.7, whereas codons in the cellulolytic subclade had dN/dS values of greater than 1.5. Positively selected codons were enriched at sites localized on the surface of the protein adjacent to the active site.

Conclusions

The structural similarity but absence of significant sequence similarity between AA9 and AA10 families suggests that these enzyme families share an ancient ancestral protein. Combined analysis of amino acid sites under Darwinian selection and structural homology modeling identified a subclade of AA10 with diversifying selection at different surfaces, potentially used for cellulose-binding and protein-protein interactions. Together, these data indicate that AA10 LPMOs are under selection to change their function, which may optimize cellulolytic activity. This work provides a phylogenetic basis for identifying and classifying additional cellulolytic or chitinolytic LPMOs.

【 授权许可】

   
2014 Book et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150121000246538.pdf 6561KB PDF download
Figure 6. 128KB Image download
Figure 5. 115KB Image download
Figure 4. 176KB Image download
Figure 3. 175KB Image download
Figure 2. 100KB Image download
Figure 1. 187KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
  • [2]Faaij APC: Bio-energy in Europe: changing technology choices. Energ Policy 2006, 34:322-342.
  • [3]Wilson DB: Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 2011, 14:259-263.
  • [4]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577. Table of contents
  • [5]Culpepper MA, Rosenzweig AC: Architecture and active site of particulate methane monooxygenase. Crit Rev Biochem Mol Biol 2012, 47:483-492.
  • [6]Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VG: Cleavage of cellulose by a CBM33 protein. Protein Sci 2011, 20:1479-1483.
  • [7]Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 2010, 49:3305-3316.
  • [8]Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH: The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 2013, 135:6069-6077.
  • [9]Schnellmann J, Zeltins A, Blaak H, Schrempf H: The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline alpha-chitin of fungi and other organisms. Mol Microbiol 1994, 13:807-819.
  • [10]Suzuki K, Suzuki M, Taiyoji M, Nikaidou N, Watanabe T: Chitin binding protein (CBP21) in the culture supernatant of Serratia marcescens 2170. Biosci Biotechnol Biochem 1998, 62:128-135.
  • [11]Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorlie M, Eijsink VG: An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 2010, 330:219-222.
  • [12]Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 2013, 6:41.
  • [13]Quinlan RJ, Sweeney MD, Lo Leggio L, Otten H, Poulsen JC, Johansen KS, Krogh KB, Jorgensen CI, Tovborg M, Anthonsen A, Tryfona T, Walter CP, Dupree P, Xu F, Davies GJ, Walton PH: Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proc Natl Acad Sci U S A 2011, 108:15079-15084.
  • [14]Westereng B, Ishida T, Vaaje-Kolstad G, Wu M, Eijsink VG, Igarashi K, Samejima M, Stahlberg J, Horn SJ, Sandgren M: The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose. PLoS One 2011, 6:e27807.
  • [15]Moser F, Irwin D, Chen S, Wilson DB: Regulation and characterization of Thermobifida fusca carbohydrate-binding module proteins E7 and E8. Biotechnol Bioeng 2008, 100:1066-1077.
  • [16]Forsberg Z, Rohr AK, Mekasha S, Andersson KK, Eijsink VG, Vaaje-Kolstad G, Sorlie M: Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Biochemistry 2014, 53:1647-1656.
  • [17]Aachmann FL, Sorlie M, Skjak-Braek G, Eijsink VG, Vaaje-Kolstad G: NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions. Proc Natl Acad Sci U S A 2012, 109:18779-18784.
  • [18]Li X, Beeson WT, Phillips CM, Marletta MA, Cate JH: Structural basis for substrate targeting and catalysis by fungal polysaccharide monooxygenases. Structure 2012, 20:1051-1061.
  • [19]Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6:1399-1406.
  • [20]Kim S, Stahlberg J, Sandgren M, Paton RS, Beckham GT: Quantum mechanical calculations suggest that lytic polysaccharide monooxygenases use a copper-oxyl, oxygen-rebound mechanism. Proc Natl Acad Sci U S A 2014, 111:149-154.
  • [21]Vu VV, Beeson WT, Phillips CM, Cate JHD, Marletta MA: Determinants of regioselective hydroxylation in the fungal polysaccharide monooxygenases. J Am Chem Soc 2014, 136:562-565.
  • [22]Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ: A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 2014, 289:2632-2642.
  • [23]Hori C, Gaskell J, Igarashi K, Samejima M, Hibbett D, Henrissat B, Cullen D: Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay. Mycologia 2013, 105:1412-1427.
  • [24]Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M: The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 A resolution. J Mol Biol 2008, 383:144-154.
  • [25]Vaaje-Kolstad G, Houston DR, Riemen AH, Eijsink VG, van Aalten DM: Crystal structure and binding properties of the Serratia marcescens chitin-binding protein CBP21. J Biol Chem 2005, 280:11313-11319.
  • [26]Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM: The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 2012, 8:e1002373.
  • [27]Vaaje-Kolstad G, Bohle LA, Gaseidnes S, Dalhus B, Bjoras M, Mathiesen G, Eijsink VG: Characterization of the chitinolytic machinery of Enterococcus faecalis V583 and high-resolution structure of its oxidative CBM33 enzyme. J Mol Biol 2012, 416:239-254.
  • [28]Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Ståhlberg J, Eijsink VG, Sandgren M: Crystal structure and computational characterization of the lytic polysaccharide monooxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 2013, 288:12828-12839.
  • [29]Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP: Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 2006, 281:29321-29329.
  • [30]Hogg D, Pell G, Dupree P, Goubet F, Martin-Orue SM, Armand S, Gilbert HJ: The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation. Biochem J 2003, 371:1027-1043.
  • [31]Wang N, Zhang Y, Wang Q, Liu J, Wang H, Xue Y, Ma Y: Gene cloning and characterization of a novel alpha-amylase from alkaliphilic Alkalimonas amylolytica. Biotechnol J 2006, 1:1258-1265.
  • [32]Lin ES, Wilson DB: Identification of a celE-binding protein and its potential role in induction of the celE gene in Thermomonospora fusca. J Bacteriol 1988, 170:3843-3846.
  • [33]Zhang S, Lao G, Wilson DB: Characterization of a Thermomonospora fusca exocellulase. Biochemistry 1995, 34:3386-3395.
  • [34]Huang L, Garbulewska E, Sato K, Kato Y, Nogawa M, Taguchi G, Shimosaka M: Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase. J Biosci Bioeng 2012, 113:293-299.
  • [35]Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012, 61:539-542.
  • [36]Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC: Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol 2013, 79:488-496.
  • [37]Kittl R, Kracher D, Burgstaller D, Haltrich D, Ludwig R: Production of four Neurospora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorimetric assay. Biotechnol Biofuels 2012, 5:79.
  • [38]Langston JA, Shaghasi T, Abbate E, Xu F, Vlasenko E, Sweeney MD: Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Appl Environ Microbiol 2011, 77:7007-7015.
  • [39]Beeson WT, Phillips CM, Cate JH, Marletta MA: Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 2012, 134:890-892.
  • [40]Takasuka TE, Book AJ, Lewin GR, Currie CR, Fox BG: Aerobic deconstruction of cellulosic biomass by an insect-associated Streptomyces. Sci Rep 2013, 3:1030.
  • [41]Roy A, Kucukural A, Zhang Y: I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010, 5:725-738.
  • [42]Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006, 34:W369-W373.
  • [43]Hurst LD: The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet 2002, 18:486.
  • [44]Bianchetti CM, Harmann CH, Takasuka TE, Hura GL, Dyer K, Fox BG: Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic streptomyces sp SirexAA-E. J Biol Chem 2013, 288:18574-18587.
  • [45]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37:D233-D238.
  • [46]Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [47]Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13:2498-2504.
  • [48]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792-1797.
  • [49]Wu M, Chatterji S, Eisen JA: Accounting for alignment uncertainty in phylogenomics. PLoS One 2012, 7:e30288.
  • [50]Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30:1312-1313.
  • [51]Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13:555-556.
  • [52]Yang Z, Rannala B: Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. Mol Biol Evol 1997, 14:717-724.
  • [53]Holm L, Rosenstrom P: Dali server: conservation mapping in 3D. Nucleic Acids Res 2010, 38:W545-W549.
  • [54]The Model Archive http://www.modelarchive.org/doi/10.5452/ma-asp8e webcite
  • [55]Shindyalov IN, Bourne PE: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 1998, 11:739-747.
  • [56]Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 2001, 98:10037-10041.
  文献评价指标  
  下载次数:43次 浏览次数:20次