期刊论文详细信息
Biotechnology for Biofuels
Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae
Xin Li2  Kulika Chomvong4  Vivian Yaci Yu2  Julie M Liang3  Yuping Lin2  Jamie H D Cate1 
[1] Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
[2] Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
[3] Department of Chemistry, University of California, Berkeley, CA, USA
[4] Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
关键词: Cellobionic acid;    Biofuels;    Metabolic engineering;    Transporter;    Phosphorylase;    β-glucosidase;    AA9;    LPMO;    Aldonic acid;   
Others  :  1228585
DOI  :  10.1186/s13068-015-0303-2
 received in 2015-06-16, accepted in 2015-07-31,  发布年份 2015
PDF
【 摘 要 】

Background

Economical production of fuels and chemicals from plant biomass requires the efficient use of sugars derived from the plant cell wall. Neurospora crassa, a model lignocellulosic degrading fungus, is capable of breaking down the complex structure of the plant cell wall. In addition to cellulases and hemicellulases, N. crassa secretes lytic polysaccharide monooxygenases (LPMOs), which cleave cellulose by generating oxidized sugars—particularly aldonic acids. However, the strategies N. crassa employs to utilize these sugars are unknown.

Results

We identified an aldonic acid utilization pathway in N. crassa, comprised of an extracellular hydrolase (NCU08755), cellobionic acid transporter (CBT-1, NCU05853) and cellobionic acid phosphorylase (CAP, NCU09425). Extracellular cellobionic acid could be imported directly by CBT-1 or cleaved to gluconic acid and glucose by a β-glucosidase (NCU08755) outside the cells. Intracellular cellobionic acid was further cleaved to glucose 1-phosphate and gluconic acid by CAP. However, it remains unclear how N. crassa utilizes extracellular gluconic acid. The aldonic acid pathway was successfully implemented in Saccharomyces cerevisiae when N. crassa gluconokinase was co-expressed, resulting in cellobionic acid consumption in both aerobic and anaerobic conditions.

Conclusions

We successfully identified a branched aldonic acid utilization pathway in N. crassa and transferred its essential components into S. cerevisiae, a robust industrial microorganism.

【 授权许可】

   
2015 Li et al.

【 预 览 】
附件列表
Files Size Format View
20151017004201432.pdf 3117KB PDF download
Fig.6. 50KB Image download
Fig.5. 22KB Image download
Fig.4. 36KB Image download
Fig.3. 90KB Image download
Fig.2. 55KB Image download
Fig.1. 46KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

【 参考文献 】
  • [1]Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al.: Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007, 315:804-807.
  • [2]Galazka JM, Tian C, Beeson WT, Martinez B, Glass NL, Cate JHD: Cellodextrin transport in yeast for improved biofuel production. Science 2010, 330:84-86.
  • [3]Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Park A, et al.: Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels. Elife 2015, 4:e05896.
  • [4]Phillips CM, Beeson WT, Cate JH, Marletta MA: Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa. ACS Chem Biol 2011, 6:1399-1406.
  • [5]Baldrian LZP, Baldrian P: Fungal polysaccharide monooxygenases: new players in the decomposition of cellulose. Fungal Ecol 2012, 5:481-489.
  • [6]Cannella D, Hsieh CWC, Felby C, Jørgensen H: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 2012, 5:26. BioMed Central Full Text
  • [7]Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X: A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 2012, 7:e31693.
  • [8]Desai SH, Rabinovitch-Deere CA, Fan Z, Atsumi S: Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Fact 2015, 14:52. BioMed Central Full Text
  • [9]Znameroski EA, Li X, Tsai JC, Galazka JM, Glass NL, Cate JHD: Evidence for transceptor function of cellodextrin transporters in Neurospora crassa. J Biol Chem 2014, 289:2610-2619.
  • [10]Xiong Y, Coradetti ST, Li X, Gritsenko MA, Clauss T, Petyuk V, et al.: The proteome and phosphoproteome of Neurospora crassa in response to cellulose, sucrose and carbon starvation. Fungal Genet Biol 2014, 72:21-33.
  • [11]Tian C, Beeson WT, Iavarone AT, Sun J, Marletta MA, Cate JHD, Glass NL: Systems analysis of plant cell wall degradation by the model filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 2009, 106:22157-22162.
  • [12]Cai P, Wang B, Ji J, Jiang Y, Wan L, Tian C, et al.: The putative cellodextrin transporter-like protein CLP1 is involved in cellulase induction in Neurospora crassa. J Biol Chem 2015, 290:788-796.
  • [13]Ha S-J, Galazka JM, Joong OhE, Kordić V, Kim H, Jin Y-S, et al.: Energetic benefits and rapid cellobiose fermentation by Saccharomyces cerevisiae expressing cellobiose phosphorylase and mutant cellodextrin transporters. Metab Eng 2013, 15:134-143.
  • [14]Alexander JK: Characteristics of cellobiose phosphorylase. J Bacteriol 1961, 81:903-910.
  • [15]Nihira T, Saito Y, Nishimoto M, Kitaoka M, Igarashi K, Ohtsubo K, et al.: Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi. FEBS Lett 2013, 587:3556-3561.
  • [16]Nam YW, Nihira T, Arakawa T, Saito Y, Kitaoka M, Nakai H: Crystal structure and substrate recognition of cellobionic acid phosphorylase playing a key role in oxidative cellulose degradation by microbes. J Biol Chem 2015, 290:18281.
  • [17]Hildebrand A, Szewczyk E, Lin H, Kasuga T, Fan Z: Engineering Neurospora crassa for improved cellobiose and cellobionate production. Appl Environ Microbiol 2015, 81:597-603.
  • [18]Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, et al.: Global analysis of protein localization in budding yeast. Nature 2003, 425:686-691.
  • [19]Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG: Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics 2007, 23:2692-2699.
  • [20]Ha S-J, Galazka JM, Kim SR, Choi J-H, Yang X, Seo J-H, et al.: Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci USA 2011, 108:504-509.
  • [21]Kim SR, Ha S-J, Wei N, Oh EJ, Jin Y-S: Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol 2012, 30:274-282.
  • [22]Frush HL: HSI: Lactonization of aldonic acids. Methods Carbohydr Chem 1963, 6:13-14.
  • [23]McCluskey K: The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol 2003, 52:245-262.
  • [24]Vogel HJ: A convenient growth medium for Neurospora (Medium N). Microbial Genet Bull 1956, 13:42-43.
  • [25]Harju S, Fedosyuk H, Peterson KR: Rapid isolation of yeast genomic DNA: Bust n’ Grab. BMC Biotechnol 2004, 4:8. BioMed Central Full Text
  • [26]Kurtzman CP: Molecular taxonomy of the yeasts. Yeast 1994, 10:1727-1740.
  • [27]Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, et al.: Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013, 8:e57048.
  • [28]Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha S-J, et al.: Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. Biotechnol Biofuels 2014, 7:85. BioMed Central Full Text
  • [29]Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, et al.: Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. Biotechnol Biofuels 2014, 7:126.
  • [30]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
  • [31]Notredame C, Higgins DG, Heringa J: T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217.
  • [32]Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18:6097-6100.
  • [33]Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M-Y (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci (Chapter 2:Unit 2.9)
  • [34]Sun L, Zeng X, Yan C, Sun X, Gong X, Rao Y, et al.: Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature 2012, 490:361-366.
  文献评价指标  
  下载次数:85次 浏览次数:21次