期刊论文详细信息
Biotechnology for Biofuels
Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation
Xiang Tao1  Yang Fang2  Yao Xiao2  Yan-ling Jin2  Xin-rong Ma2  Yun Zhao1  Kai-ze He2  Hai Zhao2  Hai-yan Wang1 
[1] College of Life Sciences, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Sichuan University, Chengdu, Sichuan, 610064, China
[2] Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
关键词: Metabolic flux;    Starch accumulation;    Nutrient starvation;    Bioethanol;    Transcriptome;    Duckweed;   
Others  :  798047
DOI  :  10.1186/1754-6834-6-72
 received in 2013-02-01, accepted in 2013-05-01,  发布年份 2013
PDF
【 摘 要 】

Background

Duckweed can thrive on anthropogenic wastewater and produce tremendous biomass production. Due to its relatively high starch and low lignin percentage, duckweed is a good candidate for bioethanol fermentation. Previous studies have observed that water devoid of nutrients is good for starch accumulation, but its molecular mechanism remains unrevealed.

Results

This study globally analyzed the response to nutrient starvation in order to investigate the starch accumulation in duckweed (Landoltia punctata). L. punctata was transferred from nutrient-rich solution to distilled water and sampled at different time points. Physiological measurements demonstrated that the activity of ADP-glucose pyrophosphorylase, the key enzyme of starch synthesis, as well as the starch percentage in duckweed, increased continuously under nutrient starvation. Samples collected at 0 h, 2 h and 24 h time points respectively were used for comparative gene expression analysis using RNA-Seq. A comprehensive transcriptome, comprising of 74,797 contigs, was constructed by a de novo assembly of the RNA-Seq reads. Gene expression profiling results showed that the expression of some transcripts encoding key enzymes involved in starch biosynthesis was up-regulated, while the expression of transcripts encoding enzymes involved in starch consumption were down-regulated, the expression of some photosynthesis-related transcripts were down-regulated during the first 24 h, and the expression of some transporter transcripts were up-regulated within the first 2 h. Very interestingly, most transcripts encoding key enzymes involved in flavonoid biosynthesis were highly expressed regardless of starvation, while transcripts encoding laccase, the last rate-limiting enzyme of lignifications, exhibited very low expression abundance in all three samples.

Conclusion

Our study provides a comprehensive expression profiling of L. punctata under nutrient starvation, which indicates that nutrient starvation down-regulated the global metabolic status, redirects metabolic flux of fixed CO2 into starch synthesis branch resulting in starch accumulation in L. punctata.

【 授权许可】

   
2013 Tao et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706094813921.pdf 1288KB PDF download
Figure 6. 50KB Image download
Figure 5. 35KB Image download
Figure 4. 18KB Image download
Figure 3. 53KB Image download
Figure 2. 31KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Sanchez OJ, Cardona CA: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technol 2008, 99:5270-5295.
  • [2]Papong S, Malakul P: Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand. Bioresource Technol 2010, 101:S112-S118.
  • [3]Zhang LA, Chen QA, Jin YL, Xue HL, Guan JF, Wang ZY, Zhao H: Energy-saving direct ethanol production from viscosity reduction mash of sweet potato at very high gravity (VHG). Fuel Process Technol 2010, 91:1845-1850.
  • [4]Ge LL, Wang P, Mou HJ: Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ 2011, 36:84-89.
  • [5]Crutzen P, Mosier A, Smith K, Winiwarter W: N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 2007, 7:11191-11205.
  • [6]Sarkar N, Ghosh SK, Bannerjee S, Aikat K: Bioethanol production from agricultural wastes: An overview. Renew Energ 2012, 37:19-27.
  • [7]Porath D, Hepher B, Koton A: Duckweed as an aquatic crop: Evaluation of clones for aquaculture. Aquat Bot 1979, 7:273-278.
  • [8]Zhao H, Appenroth K, Landesman L, Salmean AA, Lam E: Duckweed rising at Chengdu: summary of the 1st International Conference on Duckweed Application and Research. Plant Mol Biol 2012, 78:627-632.
  • [9]Landolt E: Biosystematic investigations in the family of duckweed (Lemnaceae) Volume 2. Stiftung Rubel, Zúrich, Suiza: Geobotanischen Inst ETH; 1986.
  • [10]Chaiprapat S, Cheng JJ, Classen JJ, Liehr SK: Role of internal nutrient storage in duckweed growth for swine wastewater treatment. T Asae 2005, 48:2247-2258.
  • [11]Hillman WS, Culley DD Jr: The Uses of Duckweed: The rapid growth, nutritional value, and high biomass productivity of these floating plants suggest their use in water treatment, as feed crops, and in energy-efficient farming. Am Sci 1978, 66:442-451.
  • [12]Datko AH, Mudd SH, Giovanelli J: Lemna paucicostata Hegelm. 6746: development of standardized growth conditions suitable for biochemical experimentation. Plant Physiol 1980, 65:906-912.
  • [13]Seth PN, Venkataraman R, Maheshwari SC: Studies on the growth and flowering of a short-day plant, Wolffia microscopica. Planta 1970, 90:349-359.
  • [14]Korner S, Vermaat JE, Veenstra S: The capacity of duckweed to treat wastewater: ecological considerations for a sound design. J Environ Qual 2003, 32:1583-1590.
  • [15]Skillicorn P, Spira W, Journey W: Duckweed aquaculture: a new aquatic farming system for developing countries. Banco Mundial; 1993.
  • [16]Oron G, de-Vegt A, Porath D: Nitrogen removal and conversion by duckweed grown on waste-water. Water Res 1988, 22:179-184.
  • [17]Cheng J, Bergmann BA, Classen JJ, Stomp AM, Howard JW: Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource Technol 2002, 81:81-85.
  • [18]Cheng JJ, Stomp AM: Growing Duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean-Soil Air Water 2009, 37:17-26.
  • [19]El-Shafai SA, El-Gohary FA, Nasr FA, Peter Van Der Steen N, Gijzen HJ: Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresource Technology 2007, 98:798-807.
  • [20]Xu J, Cheng JJ, Stomp AM: Nutrient removal from swine wastewater by growing Duckweed: A pilot study. T Asabe 2012, 55:181-185.
  • [21]Xu J, Shen G: Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource Technol 2011, 102:848-853.
  • [22]Crites RW, Middlebrooks JE, Reed SC: Natural Wastewater Treatment Systems. United States: CRC Press; 2006.
  • [23]Oron G: Duckweed culture for wastewater renovation and biomass production. Agr Water Manage 1994, 26:27-40.
  • [24]Reid MS, Bieleski RL: Response of Spirodela oligorrhiza to Phosphorus Deficiency. Plant Physiol 1970, 46:609-613.
  • [25]Blazey EB, McClure JW: The distribution and taxonomic significance of lignin in the Lemnaceae. Am J Bot 1968, 55:1240-1245.
  • [26]Cui WH, Xu JL, Cheng JJ, Stomp AM: Starch accumulation in duckweed for bioethanol production. Biol Eng 2011, 3:187-197.
  • [27]Xu JL, Cui WH, Cheng JJ, Stomp AM: Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 2011, 110:67-72.
  • [28]Landolt E, Kandeler R: Biosystematics investigation in the family of duckweeds (lemnacea). The family of the Lemnacea: a monographic study. Vol. 2. Zurich: Veroff Geobot Inst ETH; 1987.
  • [29]Cui W, Xu J, Cheng J, Stomp A: Growing duckweed for bioethanol production. 2010 ASABE Annual Meeting Paper 2010.
  • [30]Chen Q, Jin YL, Zhang GH, Fang Y, Xiao Y, Zhao H: Improving production of bioethanol from Duckweed (Landoltia punctata) by pectinase pretreatment. Energies 2012, 5:3019-3032.
  • [31]Li X, Jin Y, Gao X, Zhang G, Zhao H: Fermentation method of high ratios of biobutanol with Landoltia punctata(in Chinese, with English abstract). China Brewing 2012, 31:85-88.
  • [32]Xu J, Zhao H, Stomp A-M, Cheng JJ: The production of duckweed as a source of biofuels. Biofuels 2012, 3:589-601.
  • [33]Posner HB: Characteristics of X-ray-induced aberrants of Lemna perpusilla 6746. Plant Cell Physiol 1962, 3:275-284.
  • [34]Hillman WS: Photoperiodism: An effect of darkness during the light period on critical night length. Science 1963, 140:1397-1398.
  • [35]Datko AH, Mudd SH, Giovanelli J, Macnicol PK: Sulfur-containing compounds in Lemna perpusilla 6746 grown at a range of sulfate concentrations. Plant Physiol 1978, 62:629-635.
  • [36]Baldi BG, Maher BR, Slovin JP, Cohen JD: Stable isotope labeling, in vivo, of d- and l-Tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol 1991, 95:1203-1208.
  • [37]Kandeler R: Uber die Bliitenbildung bei Lemna gibba LI Kulturbedingungen und Tageslangenabhangigkeit. Z Bot 1955, 43:61-71.
  • [38]Tobin EM: White light effects on the mRNA for the light-harvesting Chlorophyll a/b-protein in Lemna gibba L. G-3. Plant Physiol 1981, 67:1078-1083.
  • [39]Wang W, Messing J: High-throughput sequencing of three Lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS One 2011, 6:e24670.
  • [40]Mardanov AV, Ravin NV, Kuznetsov BB, Samigullin TH, Antonov AS, Kolganova TV, Skyabin KG: Complete sequence of the duckweed (Lemna minor) chloroplast genome: structural organization and phylogenetic relationships to other angiosperms. J Mol Evol 2008, 66:555-564.
  • [41]Wang W, Randall AK, Todd PM: Evolution of genome size in Duckweeds (Lemnaceae). J Bot 2011, 2011:9. Article ID 570319
  • [42]Wang W, Wu Y, Yan Y, Ermakova M, Kerstetter R, Messing J: DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol 2010, 10:205. BioMed Central Full Text
  • [43]Bog M, Schneider P, Hellwig F, Sachse S, Kochieva EZ, Martyrosian E, Landolt E, Appenroth K-J: Genetic characterization and barcoding of taxa in the genus Wolffia Horkel ex Schleid.(Lemnaceae) as revealed by two plastidic markers and amplified fragment length polymorphism (AFLP). Planta 2013, 237:1-13.
  • [44]Bog M, Baumbach H, Schween U, Hellwig F, Landolt E, Appenroth KJ: Genetic structure of the genus Lemna L. (Lemnaceae) as revealed by amplified fragment length polymorphism. Planta 2010, 232:609-619.
  • [45]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [46]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
  • [47]AC't Hoen P, Ariyurek Y, Thygesen HH, Vreugdenhil E, Vossen RH, de Menezes RX, Boer JM, van Ommen G-JB, den Dunnen JT: Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res 2008, 36:e141.
  • [48]Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH: Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 2008, 17:1636-1647.
  • [49]Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV: Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 2009, 10:219. BioMed Central Full Text
  • [50]Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T: Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 2011, 12:131. BioMed Central Full Text
  • [51]Hoagland DR, Arnon DI: The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station 1950., 347
  • [52]Nakamura Y, Yuki K, Park S-Y, Ohya T: Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 1989, 30:833-839.
  • [53]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10:R25. BioMed Central Full Text
  • [54]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16:276-277.
  • [55]Goecks J, Nekrutenko A, Taylor J: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11:R86. BioMed Central Full Text
  • [56]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. In Current protocols in molecular biology 19th edition. Edited by Ausubel FM. 2010, 11-21. Chapter 19:Unit 19 10
  • [57]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
  • [58]VENNY: An interactive tool for comparing lists with Venn diagrams.
  • [59]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25-29.
  • [60]Calvin M: Photosynthesis as a resource for energy and materials. Photochem Photobiol 1976, 23:425-444.
  • [61]Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, et al.: The path forward for biofuels and biomaterials. Science 2006, 311:484-489.
  • [62]Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE: Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 2011, 108:6300-6305.
  • [63]Folts JD: Potential health benefits from the flavonoids in grape products on vascular disease. Adv Exp Med Biol 2002, 505:95-111.
  • [64]Patel JM: A review of potential health benefits of flavonoids. Lethbridge Undergraduate Research Journal 2008., 3
  • [65]Van Dyke JM, Sutton DL: Digestion of duckweed (Lemna spp.) by the grass carp (Ctenopharyngodon idella). J Fish Biol 1977, 11:273-278.
  • [66]Besseau S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M: Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 2007, 19:148-162.
  • [67]Ma QH, Wang C, Zhu HH: TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes. Biochimie 2011, 93:1179-1186.
  • [68]Hahlbrock K, Grisebach H: Enzymic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 1979, 30:105-130.
  • [69]Wang L, Li P, Brutnell TP: Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 2010, 9:118-128.
  • [70]Egan AN, Schlueter J, Spooner DM: Applications of next-generation sequencing in plant biology. Am J Bot 2012, 99:175-185.
  • [71]Thorsteinsson B, Tillberg J-E: Carbohydrate partitioning, photosynthesis and growth in Lemna gibba G3. II. Effects of phosphorus limitation. Physiol Plantarum 1987, 71:271-276.
  • [72]White HL, Templeman WG: The interaction of factors in the growth of Lemna: X. the interaction of nitrogen and light intensity in relation to respiration. Ann Bot-London 1937, 1:191-204.
  • [73]Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L: The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 2003, 6:280-287.
  • [74]Hermans C, Hammond JP, White PJ, Verbruggen N: How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci 2006, 11:610-617.
  • [75]Reymond M, Svistoonoff S, Loudet O, Nussaume L, Desnos T: Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 2006, 29:115-125.
  • [76]Svistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T: Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 2007, 39:792-796.
  • [77]Landsberg EC: Hormonal regulation of iron-stress response in sunflower roots: A morphological and cytological investigation. Protoplasma 1996, 194:69-80.
  • [78]Bates TR, Lynch JP: Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 1996, 19:529-538.
  • [79]Schachtman DP, Shin R: Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 2007, 58:47-69.
  • [80]M H: Mineral Nutrition of Higher Plants. 2nd edition. London: Academic Press; 1995.
  • [81]Duff SM, Moorhead GB, Lefebvre DD, Plaxton WC: Phosphate starvation inducible; bypasses' of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 1989, 90:1275-1278.
  • [82]Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J: Plant hormones and nutrient signaling. Plant Mol Biol 2009, 69:361-373.
  • [83]Korzeniewski B: Regulation of ATP supply during muscle contraction: theoretical studies. Biochem J 1998, 330(Pt 3):1189-1195.
  • [84]Huang YC, Colman RF: Affinity labeling of the allosteric ADP activation site of NAD-dependent isocitrate dehydrogenase by 6-(4-bromo-2,3-dioxobutyl)thioadenosine 5'-diphosphate. J Biol Chem 1984, 259:12481-12488.
  • [85]Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A: Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plantarum 2008, 134:508-521.
  • [86]Paul M, Driscoll S: Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ 1997, 20:110-116.
  • [87]Conesa A, Gotz S: Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008, 2008:619832.
  • [88]Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21:3674-3676.
  • [89]Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L: WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 2006, 34:W293-297.
  文献评价指标  
  下载次数:29次 浏览次数:8次