Biotechnology for Biofuels | |
Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk | |
Yang Liu2  Yang Fang2  Mengjun Huang2  Yanling Jin2  Jiaolong Sun2  Xiang Tao2  Guohua Zhang2  Kaize He2  Yun Zhao1  Hai Zhao2  | |
[1] Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, N0.24 South Section 1, Yihuan Road, Chengdu, 610064, China | |
[2] Environmental Microbiology Key Laboratory of Sichuan Province, No.9 Section 4, Renmin Nan Road, Chengdu, 610041, China | |
关键词: Pathway; Crosstalk; Uniconazole; Endogenous hormones; Starch accumulation; Bioethanol; | |
Others : 1177290 DOI : 10.1186/s13068-015-0245-8 |
|
received in 2014-10-31, accepted in 2015-03-24, 发布年份 2015 | |
【 摘 要 】
Background
Landoltia punctata is a widely distributed duckweed species with great potential to accumulate enormous amounts of starch for bioethanol production. We found that L. punctata can accumulate starch rapidly accompanied by alterations in endogenous hormone levels after uniconazole application, but the relationship between endogenous hormones and starch accumulation is still unclear.
Results
After spraying fronds with 800 mg/L uniconazole, L. punctata can accumulate starch quickly, with a dry weight starch content of up to 48% after 240 h of growth compared to 15.7% in the control group. Electron microscopy showed that the starch granule content was elevated after uniconazole application. The activities of key enzymes involved in starch synthesis were also significantly increased. Moreover, the expression of regulatory elements of the cytokinin (CK), abscisic acid (ABA) and gibberellin (GA) signaling pathways that are involved in chlorophyll and starch metabolism also changed correspondingly. Importantly, the expression levels of key enzymes involved in starch biosynthesis were up-regulated, while transcript-encoding enzymes involved in starch degradation and other carbohydrate metabolic branches were down-regulated.
Conclusion
The increase of endogenous ABA and CK levels positively promoted the activity of ADP-glucose pyrophosphorylase (AGPase) and chlorophyll content, while the decrease in endogenous GA levels inactivated α-amylase. Thus, the alterations of endogenous hormone levels resulted in starch accumulation due to regulation of the expression of genes involved in the starch metabolism pathway.
【 授权许可】
2015 Liu et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150429062405427.pdf | 2045KB | download | |
Figure 6. | 38KB | Image | download |
Figure 5. | 60KB | Image | download |
Figure 4. | 41KB | Image | download |
Figure 3. | 57KB | Image | download |
Figure 2. | 92KB | Image | download |
Figure 1. | 32KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Ge L, Wang P, Mou H: Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energ 2011, 36(1):84-9.
- [2]Crutzen PJ, Mosier AR, Smith KA, Winiwarter W: N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 2008, 8(2):389-95.
- [3]Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, et al.: Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319(5867):1238-40.
- [4]Landolt E: Biosystematic investigations in the family of duckweed (Lemnaceae). Stiftung Rubel, Zúrich, Suiza, Geobotanischen Inst ETH; 1986.
- [5]Ge X, Zhang N, Phillips GC, Xu J: Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour Technol. 2012, 124:485-8.
- [6]Leng R, Stambolie J, Bell R: Duckweed-a potential high-protein feed resource for domestic animals and fish. Livest Res Rural Dev 1995, 7(1):36.
- [7]Hillman WS, Culley DD Jr: The uses of duckweed. Am Sci. 1978, 66:442-51.
- [8]Xu J, Cui W, Cheng JJ, Stomp A-M: Production of high-starch duckweed and its conversion to bioethanol. Biosyst Eng 2011, 110(2):67-72.
- [9]Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, et al.: Potential of duckweed in the conversion of wastewater nutrients to valuable biomass: a pilot-scale comparison with water hyacinth. Bioresour Technol. 2014, 163:82-91.
- [10]Reid M, Bieleski R: Response of Spirodela oligorrhiza to phosphorus deficiency. Plant Physiol 1970, 46(4):609-13.
- [11]Bayrakci AG, Kocar G: Second-generation bioethanol production from water hyacinth and duckweed in Izmir: a case study. Renew Sust Energ Rev. 2014, 30:306-16.
- [12]El-Shafai SA, El-Gohary FA, Nasr FA, Peter Van Der Steen N, Gijzen HJ: Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresour Technol 2007, 98(4):798-807.
- [13]Blazey EB, McClure JW: The distribution and taxonomic significance of lignin in the Lemnaceae. Amer J Bot 1968, 55:1240-1245.
- [14]Cui W, Xu J, Cheng J, Stomp A: Starch accumulation in duckweed for bioethanol production. Biol Eng. 2011, 3:187-97.
- [15]Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H: Improving production of bioethanol from Duckweed (Landoltia punctata) by pectinase pretreatment. Energies 2012, 5(8):3019-32.
- [16]Xiao Y, Fang Y, Jin Y, Zhang G, Zhao H: Culturing duckweed in the field for starch accumulation. Ind Crop Prod. 2013, 48:183-90.
- [17]McLAREN JS, Smith H: The effect of abscisic acid on growth, photosynthetic rate and carbohydrate metabolism in Lemna minor L. New Phytol 1976, 76(1):11-20.
- [18]McCombs P, Ralph R: Protein, nucleic acid and starch metabolism in the duckweed Spirodela oligorrhiza treated with cytokinins. Biochem J. 1972, 129:403-17.
- [19]Wang W, Messing J: Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol 2012, 12:5. BioMed Central Full Text
- [20]Pavlista AD: Growth regulators increased yield of Atlantic potato. Am J Potato Res 2011, 88(6):479-84.
- [21]Fletcher RA, Hofstra G: Improvement of uniconazole-induced protection in wheat seedlings. J Plant Growth Regul 1990, 9(4):207-12.
- [22]Fletcher R, Hofstra G, Gao JG: Comparative fungitoxic and plant growth regulating properties of triazole derivatives. Plant Cell Physiol 1986, 27(2):367-71.
- [23]Zhou W, Ye Q: Physiological and yield effects of uniconazole on winter rape (Brassica napus L.). J Plant Growth Regul. 1996, 2:69-73.
- [24]Wan-zhuo G, Zheng-yi Z, Weng-yu Y, Wen-zhu L: Effect of uniconazloe for dry seed treatment on morphological characteristics and yield of soybean. Soybean Science 2007, 26(3):369.
- [25]Zhang M, Duan L, Tian X, He Z, Li J, Wang B, et al.: Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol 2007, 164(6):709-17.
- [26]Smith AM: The biosynthesis of starch granules. Biomacromolecules 2001, 2(2):335-41.
- [27]Martin C, Smith AM: Starch biosynthesis. Plant Cell 1995, 7(7):971-85.
- [28]Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M: Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics 2014, 15:671. BioMed Central Full Text
- [29]Wang X, Zhou G, Xu X, Geng R, Zhou J, Yang Y, et al.: Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 2014, 549(2):252-7.
- [30]Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, et al.: Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnol Biofuels 2013, 6(1):72. BioMed Central Full Text
- [31]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-40.
- [32]Guan C, Wang X, Feng J, Hong S, Liang Y, Ren B, et al.: Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of abscisic acid insensitive5 protein in Arabidopsis. Plant Physiol 2014, 164(3):1515-26.
- [33]Ramireddy E, Chang L, Schmulling T: Cytokinin as a mediator for regulating root system architecture in response to environmental cues. Plant Signal Behav. 2014, 9:e27771-1.
- [34]Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E: Stress-induced Cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol 2013, 163(4):1609-22.
- [35]Bastias A, Yanez M, Osorio S, Arbona V, Gomez-Cadenas A, Fernie AR, et al.: The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. J Exp Bot 2014, 65(9):2351-63.
- [36]Kim HJ, Chiang Y-H, Kieber JJ, Schaller GE: SCFKMD controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc Natl Acad Sci U S A 2013, 110(24):10028-33.
- [37]Yang D-L, Yao J, Mei C-S, Tong X-H, Zeng L-J, Li Q, et al.: Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 2012, 109(19):E1192-200.
- [38]Giulia E, Alessandro B, Mariano D, Andrea B, Benedetto R, Angelo R: Early induction of apple fruitlet abscission is characterized by an increase of both isoprene emission and abscisic acid content. Plant Physiol 2013, 161(4):1952-69.
- [39]Wang Y, Li L, Ye T, Zhao S, Liu Z, Feng Y-Q, et al.: Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J 2011, 68(2):249-61.
- [40]Wang Y, Tao X, Tang X-M, Xiao L, Sun J-l, Yan X-F, Li D, Deng H-Y, Ma X-R: Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid. BMC Genomics 2013, 14:841. BioMed Central Full Text
- [41]Chandrasekaran U, Xu W, Liu A: Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci 2014, 4:33.
- [42]Dugas DV, Monaco MK, Olsen A, Klein RR, Kumari S, Ware D, Klein PE: Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid. BMC Genomics 2011, 12:514. BioMed Central Full Text
- [43]Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, et al.: Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Plant Cell Physiol 2014, 55(7):1325-42.
- [44]Sakai A, Yashiro K, Kawano S, Kuroiwa T: Amyloplast formation in cultured tobacco cells; effects of plant hormones on multiplication, size, and starch content. Plant Cell Rep 1996, 15(8):601-5.
- [45]Fletcher RA, McCullag D: Cytokinin-induced chlorophyll formation in cucumber cotyledons. Planta 1971, 101(1):88.
- [46]Yang J, Peng S, Visperas RM, Sanico AL, Zhu Q, Gu S: Grain filling pattern and cytokinin content in the grains and roots of rice plants. Plant Growth Regul 2000, 30(3):261-70.
- [47]To JPC, Kieber JJ: Cytokinin signaling: two-components and more. Trends Plant Sci 2008, 13(2):85-92.
- [48]Werner T, Schmuelling T: Cytokinin action in plant development. Curr Opin Plant Biol 2009, 12(5):527-38.
- [49]Pilkington SM, Montefiori M, Galer AL, Emery RJN, Allan AC, Jameson PE: Endogenous cytokinin in developing kiwifruit is implicated in maintaining fruit flesh chlorophyll levels. Ann Bot 2013, 112(1):57-68.
- [50]Akihiro T, Mizuno K, Fujimura T: Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol 2005, 46(6):937-46.
- [51]Gomez-Cadenas A, Zentella R, Walker-Simmons MK, Ho THD: Gibberellin/abscisic acid antagonism in barley aleurone cells: Site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 2001, 13(3):667-79.
- [52]Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI: Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Gene Dev 2010, 24(16):1695-708.
- [53]Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, et al.: Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 2009, 324(5930):1068-71.
- [54]Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, et al.: Molecular basis of the core regulatory network in ABA responses: sensing. Signaling Trans Plant Cell Physiol 2010, 51(11):1821-39.
- [55]Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW: Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 2001, 26(4):421-33.
- [56]Mares DJ, Marschner H, Krauss A: Effect of gibberellic-acid on growth and carbohydrate-metabolism of developing tubers of potato (solanum-tuberosum). Physiol Plant 1981, 52(2):267-74.
- [57]Kaur S, Gupta AK, Kaur N: Gibberellin A3 reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Regul 1998, 26(2):85-90.
- [58]Rentzsch S, Podzimska D, Voegele A, Imbeck M, Mueller K, Linkies A, et al.: Dose- and tissue-specific interaction of monoterpenes with the gibberellin-mediated release of potato tuber bud dormancy, sprout growth and induction of alpha-amylases and beta-amylases. Planta 2012, 235(1):137-51.
- [59]Yang J, Zhang J, Wang Z, Zhu Q, Wang W: Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 2001, 127(1):315-23.
- [60]Smith AM, Zeeman SC, Smith SM: Starch degradation. Annu Rev Plant Biol. 2005, 56:73-98.
- [61]Ghiena C, Schulz M, Schnabl H: Starch degradation and distribution of the starch-degrading enzymes in Vicia faba leaves. Plant Physiol 1993, 101(1):73-9.
- [62]Barrett JE, Nell TA: Irrigation interval and growth retardants affect poinsettia development. Proceed Florida State Horticultural Soc. 1982, 95:167-9.
- [63]Davis TD, Steffens GL, Sankhla N: Triazole plant growth regulators. Hortic Rev 1988, 63:105.
- [64]Hoagland DR, Arnon DI: The water-culture method for growing plants without soil. Circular California Agricultural Experiment Station,1950;347:2nd edit pp.32 pp.
- [65]Zhang L, Zhao H, Gan M, Jin Y, Gao X, Chen Q, et al.: Application of simultaneous saccharification and fermentation (SSF) from viscosity reducing of raw sweet potato for bioethanol production at laboratory, pilot and industrial scales. Bioresour Technol 2011, 102(6):4573-9.
- [66]Wu Y, Messing J: RNA interference-mediated change in protein body morphology and seed opacity through loss of different Zein Proteins1 C W OA. Plant Physiol 2010, 153(1):337-47.
- [67]Ji X, Gai Y, Zheng C, Mu Z: Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry (Morus alba L.). Proteomics. 2009, 23:5328-39.
- [68]Tárrago JF, Nicolás G: Starch degradation in the cotyledons of germinating lentils. Plant Physiol 1976, 58(5):618-21.
- [69]Nakamura Y, Yuki K, Park S-Y, Ohya T: Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol 1989, 30(6):833-9.
- [70]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29(7):644-52.
- [71]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
- [72]Conesa A, Götz S: Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008, 2008:1-13.
- [73]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21(18):3674-6.
- [74]Oliveros JC: VENNY: An interactive tool for comparing lists with Venn Diagrams. 2007.