期刊论文详细信息
Biology of Sex Differences
Large-scale transcriptome sequencing reveals novel expression patterns for key sex-related genes in a sex-changing fish
Hui Liu1  Melissa S. Lamm3  Kim Rutherford1  Michael A. Black2  John R. Godwin3  Neil J. Gemmell1 
[1] Department of Anatomy, University of Otago, Dunedin, New Zealand
[2] Department of Biochemistry, University of Otago, Dunedin, New Zealand
[3] W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
关键词: Bluehead wrasse;    Protogynous sex change;    RNA-seq;    Transcriptome;    Gonad;    Brain;    Sexual dimorphism;    Sex-biased gene expression;   
Others  :  1234098
DOI  :  10.1186/s13293-015-0044-8
 received in 2015-09-11, accepted in 2015-11-09,  发布年份 2015
【 摘 要 】

Background

Teleost fishes exhibit remarkably diverse and plastic sexual developmental patterns. One of the most astonishing is the rapid socially controlled female-to-male (protogynous) sex change observed in bluehead wrasses (Thalassoma bifasciatum). Such functional sex change is widespread in marine fishes, including species of commercial importance, yet its underlying molecular basis remains poorly explored.

Methods

RNA sequencing was performed to characterize the transcriptomic profiles and identify genes exhibiting sex-biased expression in the brain (forebrain and midbrain) and gonads of bluehead wrasses. Functional annotation and enrichment analysis were carried out for the sex-biased genes in the gonad to detect global differences in gene products and genetic pathways between males and females.

Results

Here we report the first transcriptomic analysis for a protogynous fish. Expression comparison between males and females reveals a large set of genes with sex-biased expression in the gonad, but relatively few such sex-biased genes in the brain. Functional annotation and enrichment analysis suggested that ovaries are mainly enriched for metabolic processes and testes for signal transduction, particularly receptors of neurotransmitters and steroid hormones. When compared to other species, many genes previously implicated in male sex determination and differentiation pathways showed conservation in their gonadal expression patterns in bluehead wrasses. However, some critical female-pathway genes (e.g., rspo1 and wnt4b) exhibited unanticipated expression patterns. In the brain, gene expression patterns suggest that local neurosteroid production and signaling likely contribute to the sex differences observed.

Conclusions

Expression patterns of key sex-related genes suggest that sex-changing fish predominantly use an evolutionarily conserved genetic toolkit, but that subtle variability in the standard sex-determination regulatory network likely contributes to sexual plasticity in these fish. This study not only provides the first molecular data on a system ideally suited to explore the molecular basis of sexual plasticity and tissue re-engineering, but also sheds some light on the evolution of diverse sex determination and differentiation systems.

【 授权许可】

   
2015 Liu et al.

附件列表
Files Size Format View
Fig. 8. 62KB Image download
Fig. 7. 31KB Image download
Fig. 6. 150KB Image download
Fig. 5. 56KB Image download
Fig. 4. 53KB Image download
Fig. 3. 81KB Image download
Fig. 2. 22KB Image download
Fig. 1. 40KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

【 参考文献 】
  • [1]Gamble T, Zarkower D. Sex determination. Curr Biol. 2012; 22:R257-62.
  • [2]Jazin E, Cahill L. Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci. 2010; 11:9-17.
  • [3]McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not so inconvenient truth. J Neurosci. 2012; 32:2241-7.
  • [4]Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and en vironmental influences. Aquaculture. 2002; 208:191-364.
  • [5]Barske LA, Capel B. Blurring the edges in vertebrate sex determination. Curr Opin Genet Dev. 2008; 18:499-505.
  • [6]Paul-Prasanth B, Bhandari RK, Kobayashi T, Horiguchi R, Kobayashi Y, Nakamoto M, et al. Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists. Sci Rep. 2013;3:2862.
  • [7]Kobayashi H, Iwamatsu T. Sex reversal in the medaka Oryzias latipes by brief exposure of early embryos to estradiol-17beta. Zool Sci. 2005; 22:1163-7.
  • [8]Sato T, Endo T, Yamahira K, Hamaguchi S, Sakaizumi M. Induction of female-to-male sex reversal by high temperature treatment in Medaka, Oryzias latipes. Zool Sci. 2005; 22:985-8.
  • [9]Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. Induction of XY sex reversal by estrogen involves altered gene expression in a teleost, tilapia. Cytogenet Genome Res. 2003; 101:289-94.
  • [10]Kwon JY, McAndrew BJ, Penman DJ. Treatment with an aromatase inhibitor suppresses high-temperature feminization of genetic male (YY) Nile tilapia. J of Fish Bio. 2002; 60:625-36.
  • [11]Bhandari RK, Nakamura M, Kobayashi T, Nagahama Y. Suppression of steroidogenic enzyme expression during androgen-induced sex reversal in Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol. 2006; 145:20-4.
  • [12]Nakamura M, Kobayashi Y, Miura S, Alam MA, Bhandari RK. Sex change in coral reef fish. Fish Physiol Biochem. 2005; 31:117-22.
  • [13]Godwin J. Socially controlled sex change in fishes. From Genome to Environment. Edited by Farrell A. Elsevier Inc, In Encyclopedia of Fish Physiology; 2011.
  • [14]Munday PL, Buston PM, Warner RR. Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol. 2006; 21:89-95.
  • [15]Avise JC, Mank JE. Evolutionary perspectives on hermaphroditism in fishes. Sex Dev. 2009; 3:152-63.
  • [16]Godwin J. Social determination of sex in reef fishes. Semin Cell Dev Biol. 2009; 20:264-70.
  • [17]Ungewitter EK, Yao HHC. How to make a gonad: cellular mechanisms governing formation of the testes and ovaries. Sex Dev. 2013; 7:7-20.
  • [18]Herpin A, Adolfi MC, Nicol B, Hinzmann M, Schmidt C, Klughammer J et al.. Divergent expression regulation of gonad development genes in medaka shows incomplete conservation of the downstream regulatory network of vertebrate sex determination. Mol Biol Evol. 2013; 30:2328-46.
  • [19]Wu G-C, Tomy S, Lee M-F, Lee Y-H, Yueh W-S, Lin C-J et al.. Sex differentiation and sex change in the protandrous black porgy, Acanthopagrus schlegeli. Gen Comp Endocrinol. 2010; 167:417-21.
  • [20]Manousaki T, Tsakogiannis A, Lagnel J, Sarropoulou E, Xiang JZ, Papandroulakis N et al.. The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). BMC Genomics. 2014; 15:655.
  • [21]Ravi P, Jiang J, Liew WC, Orban L. Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates calcarifer). Reprod Biol Endocrinol. 2014; 12:5.
  • [22]Kikuchi K, Hamaguchi S. Novel sex-determining genes in fish and sex chromosome evolution. Dev Dyn. 2013; 242:339-53.
  • [23]Sun F, Liu S, Gao X, Jiang Y, Perera D, Wang X et al.. Male-biased genes in catfish as revealed by RNA-seq analysis of the testis transcriptome. PLoS ONE. 2013; 8: Article ID e68452
  • [24]Parise-Maltempi PP, da Silva EL, Rens W, Dearden F, O’Brien PCM, Trifonov V et al.. Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting. BMC Genet. 2013; 14:60.
  • [25]Takehana Y et al.. Chapter 15—frequent turnover of sex chromosomes in the medaka fishes. In: Medaka : a model for organogenesis, human disease, and evolution. Naruse K, editor. Springer, Berlin; 2011: p.229-40.
  • [26]Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005; 95:118-28.
  • [27]Tanaka K, Takehana Y, Naruse K, Hamaguchi S, Sakaizumi M. Evidence for different origins of sex chromosomes in closely related Oryzias fishes: substitution of the master sex-determining gene. Genetics. 2007; 177:2075-81.
  • [28]Arkhipchuk VV. Role of chromosomal and genome mutations in the evolution of bony fishes. Hydrobiol J. 1995; 31:55-65.
  • [29]Iturra P, Lam N, La Fuente De M, Vergara N, Medrano JF. Characterization of sex chromosomes in rainbow trout and coho salmon using fluorescence in situ hybridization (FISH). Genetica. 2001; 111:125-31.
  • [30]Phillips RB, Park LK, Naish KA. Assignment of Chinook salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss). G3 (Bethesda). 2013; 3:2289-95.
  • [31]Ross JA, Urton JR, Boland J, Shapiro MD, Peichel CL. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 2009; 5: Article ID e1000391
  • [32]Henning F, Moysés CB, Calcagnotto D, Meyer A, de Almeida-Toledo LF. Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity. 2011; 106:391-400.
  • [33]Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P et al.. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014; 46:253-60.
  • [34]Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N et al.. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 2012; 8: Article ID e1002798
  • [35]Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C et al.. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol. 2012; 22:1423-8.
  • [36]Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ et al.. A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics. 2013; 14:58.
  • [37]Bradley KM, Breyer JP, Melville DB, Broman KW, Knapik EW, Smith JR. An SNP-based linkage map for zebrafish reveals sex determination loci. G3 (Bethesda). 2011; 1:3-9.
  • [38]Shirak A, Seroussi E, Cnaani A, Howe AE, Domokhovsky R, Zilberman N et al.. Amh and Dmrta2 genes map to tilapia (Oreochromis spp.) linkage group 23 within quantitative trait locus regions for sex determination. Genetics. 2006; 174:1573-81.
  • [39]Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T et al.. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A. 2012; 109:2955-9.
  • [40]Mei J, Gui J-F. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish. Sci China Life Sci. 2015; 58:124-36.
  • [41]Penman DJ, Piferrer F. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rew Fish Sci. 2008; 16:16-34.
  • [42]Piferrer F, Guiguen Y. Fish gonadogenesis. Part II: molecular biology and genomics of sex differentiation. Rew Fish Sci. 2008; 16:35-55.
  • [43]Siegfried KR. In search of determinants: gene expression during gonadal sex differentiation. J Fish Biol. 2010; 76:1879-902.
  • [44]Small CM, Carney GE, Mo Q, Vannucci M, Jones AG. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: Evidence for masculinization of the transcriptome. BMC Genomics. 2009; 10:579.
  • [45]Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS ONE. 2008; 3: Article ID e1791
  • [46]Nakamoto M, Matsuda M, Wang DS, Nagahama Y, Shibata N. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Biophys Res Commun. 2006; 344:353-61.
  • [47]Tao W, Yuan J, Zhou L, Sun L, Sun Y, Yang S et al.. Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS ONE. 2013; 8: Article ID e63604
  • [48]Shibata Y, Paul-Prasanth B, Suzuki A, Usami T, Nakamoto M, Matsuda M et al.. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns. 2010; 10:283-9.
  • [49]Ijiri S, Kaneko H, Kobayashi T, Wang D-S, Sakai F, Paul-Prasanth B et al.. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod. 2008; 78:333-41.
  • [50]Kobayashi T, Kajiura-Kobayashi H, Guan GJ, Nagahama Y. Sexual dimorphic expression of DMRT1 and Sox9a during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (Oreochromis niloticus). Dev Dyn. 2008; 237:297-306.
  • [51]Vizziano D, Randuineau G, Baron D, Cauty C, Guiguen Y. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev Dyn. 2007; 236:2198-206.
  • [52]Baron D, Guiguen Y. Gene expression during gonadal sex differentiation in rainbow trout (Oncorhynchus mykiss): from candidate genes studies to high throughout genomic approach. Fish Physiol Biochem. 2003; 28:119-23.
  • [53]Nicol B, Guiguen Y. Expression profiling of Wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex Dev. 2011; 5:318-29.
  • [54]Wu G-C, Chang C-F. The switch of secondary sex determination in protandrous black porgy, Acanthopagrus schlegeli. Fish Physiol Biochem. 2013; 39:33-8.
  • [55]Godwin J. Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol. 2010; 31:203-16.
  • [56]Larson ET. Neuroendocrine regulation in sex-changing fishes. In: Hormones and Reproduction of Vertebrates. Norris DO, editor. Academic, Waltham; 2010: p.149-68.
  • [57]Feddern HA. The spawning, growth, and general behavior of the bluehead wrasse, Thalassoma bifasciatum (Pisces: Labridae). Bull Mar Sci. 1965;896–941.
  • [58]Warner RR, Robertson DR. Sexual patterns in the labroid fishes of the western Caribbean I: the wrasses. Smithson Contrib Zool. 1978; 254:1-27.
  • [59]Warner RR. Mating behavior and hermaphroditism in coral reef fishes. Am Sci. 1984; 72:128-36.
  • [60]Warner RR, Swearer SE. Social control of sex change in the bluehead wrasse, Thalassoma bifasciatum (Pisces: Labridae). Biol Bull. 1991; 181:199-204.
  • [61]Godwin J, Crews D, Warner RR. Behavioural sex change in the absence of gonads in a coral reef fish. Proc Biol Sci. 1996; 263:1683-8.
  • [62]Lamm MS, Liu H, Gemmell NJ, Godwin JR. The need for speed: neuroendocrine regulation of socially-controlled sex change. Integr Comp Biol. 2015; 55:307-22.
  • [63]Gregory TR. Animal Genome Size Database. 2015. Available online at: http://www.genomesize.com. Accessed 06 Nov 2015.
  • [64]Semsar K, Godwin J. Social influences on the arginine vasotocin system are independent of gonads in a sex-changing fish. J Neurosci. 2003; 23:4386-93.
  • [65]Semsar K, Godwin J. Multiple mechanisms of phenotype development in the bluehead wrasse. Horm Behav. 2004; 45:345-53.
  • [66]Nakamura M, Hourigan TF, Yamauchi K, Nagahama Y, Grau EG. Histological and ultrastructural evidence for the role of gonadal-steroid hormones in sex change in the protogynous wrasse Thalassoma-Duperrey. Environ Biol Fish. 1989; 24:117-36.
  • [67]O’Connell LA, Hofmann HA. Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol. 2011; 32:320-35.
  • [68]Diaz de Cerio O, Rojo-Bartolomé I, Bizarro C, Ortiz-Zarragoitia M, Cancio I. 5S rRNA and accompanying proteins in gonads: powerful markers to identify sex and reproductive endocrine disruption in fish. Environ Sci Technol. 2012; 46:7763-71.
  • [69]Andrews S. FastQC: A quality control tool for high throughput sequence data. 2010. Available online at:. http://www. bioinformatics.babraham.ac.uk/projects/fastqc webcite
  • [70]Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114-20.
  • [71]Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011; 27:2957-63.
  • [72]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I et al.. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011; 29:644.
  • [73]Singhal S. De novo transcriptomic analyses for non-model organisms: an evaluation of methods across a multi-species data set. Mol Ecol Resour. 2013; 13:403-16.
  • [74]Li B, Fillmore N, Bai Y, Collins M, Thomson JA, Stewart R et al.. Evaluation of de novo transcriptome assemblies from RNA-Seq data. Genome Biol. 2013; 15:553.
  • [75]Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N et al.. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods. 2010; 7:709-15.
  • [76]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013; 8:1494-512.
  • [77]Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007; 23:1061-7.
  • [78]Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K et al.. BLAST+: architecture and applications. BMC bioinformatics. 2009; 10:421.
  • [79]Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S et al.. Ensembl 2014. Nucleic Acids Res. 2014; 42:D749-55.
  • [80]Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013; 14:178-92.
  • [81]UniProt: a hub for protein information. Nucleic Acids Res. 2015; 43:D204-12.
  • [82]Min XJ, Butler G, Storms R, Tsang A. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005; 33:W677-80.
  • [83]Langmead B: Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics 2010, Chapter 11:Unit 11.7.doi:. 10. 1002/0471250953.bi1107s32 webcite
  • [84]Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics. 2011; 12:323.
  • [85]R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2014.
  • [86]Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010; 11:R106.
  • [87]Jolliffe IT. Principal component analysis. 2nd ed. Springer, Berlin; 2002.
  • [88]Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A et al.. gplots: Various R programming tools for plotting data. R package version. 2009; 2:4.
  • [89]Richard Bourgon RGWH. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010; 107:9546-51.
  • [90]Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57:289-300.
  • [91]Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J et al.. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. 2015; 43:W589-98.
  • [92]Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44-57.
  • [93]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al.. Gene ontology: tool for the unification of biology. Nat Genet. 2000; 25:25-9.
  • [94]Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28:27-30.
  • [95]Liu S, Zhang Y, Zhou Z, Waldbieser G, Sun F, Lu J et al.. Efficient assembly and annotation of the transcriptome of catfish by RNA-Seq analysis of a doubled haploid homozygote. BMC Genomics. 2012; 13:595.
  • [96]Wong RY, McLeod MM, Godwin J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genomics. 2014; 15:905.
  • [97]Larson ET, Norris DO, Grau EG, Summers CH. Monoamines stimulate sex reversal in the saddleback wrasse. Gen Comp Endocrinol. 2003; 130:289-98.
  • [98]Semsar K, Kandel F, Godwin J. Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav. 2001; 40:21-31.
  • [99]Semsar K, Perreault HAN, Godwin J. Fluoxetine-treated male wrasses exhibit low AVT expression. Brain Res. 2004; 1029:141-7.
  • [100]Lema SC, Sanders KE, Walti KA. Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. J Neuroendocrinol. 2015; 27:142-57.
  • [101]Zohar Y, Muñoz-Cueto JA, Elizur A, Kah O. Neuroendocrinology of reproduction in teleost fish. Gen Comp Endocrinol. 2010; 165:438-55.
  • [102]Maruska KP, Fernald RD. Social regulation of gene expression in the hypothalamic-pituitary-gonadal axis. Physiology (Bethesda). 2011; 26:412-23.
  • [103]Joy KP, Chaube R. Vasotocin—a new player in the control of oocyte maturation and ovulation in fish. Gen Comp Endocrinol. 2015.
  • [104]Maitra SK, Chattoraj A, Mukherjee S, Moniruzzaman M. Melatonin: a potent candidate in the regulation of fish oocyte growth and maturation. Gen Comp Endocrinol. 2013; 181:215-22.
  • [105]Joy KP, Singh V, Chaube R. An in vitro study on catecholamine modulation of ovarian steroidogenic activity in the catfish Heteropneustes fossilis. Gen Comp Endocrinol. 2014; 196:91-9.
  • [106]Guiguen Y, Fostier A, Piferrer F, Chang C-F. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol. 2010; 165:352-66.
  • [107]Tokarz J, Möller G, de Angelis MH, Adamski J. Zebrafish and steroids: what do we know and what do we need to know? J Steroid Biochem Mol Biol. 2013; 137:165-73.
  • [108]Higa M, Ogasawara K, Sakaguchi A, Nagahama Y, Nakamura M. Role of steriod hormones in sex change of protogynous wrasse. Fish Physiol Biochem. 2003; 28:149-50.
  • [109]von Schalburg KR, Yasuike M, Davidson WS, Koop BF. Regulation, expression and characterization of aromatase (cyp19b1) transcripts in ovary and testis of rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol. 2010; 155:118-25.
  • [110]Baron D, Houlgatte R, Fostier A, Guiguen Y. Expression profiling of candidate genes during ovary-to-testis trans-differentiation in rainbow trout masculinized by androgens. Gen Comp Endocrinol. 2008; 156:369-78.
  • [111]Delalande C, Goupil A-S, Lareyre J-J, Le Gac F. Differential expression patterns of three aromatase genes and of four estrogen receptors genes in the testes of trout (Oncorhynchus mykiss). Mol Reprod Dev. 2015; 82:694-708.
  • [112]Fernandino JI, Hattori RS, Kishii A, Strüssmann CA, Somoza GM. The cortisol and androgen pathways cross talk in high temperature-induced masculinization: the 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinol. 2012; 153:6003-11.
  • [113]Hayashi Y, Kobira H, Yamaguchi T, Shiraishi E, Yazawa T, Hirai T et al.. High temperature causes masculinization of genetically female medaka by elevation of cortisol. Mol Reprod Dev. 2010; 77:679-86.
  • [114]Kitano T, Hayashi Y, Shiraishi E, Kamei Y. Estrogen rescues masculinization of genetically female medaka by exposure to cortisol or high temperature. Mol Reprod Dev. 2012; 79:719-26.
  • [115]Yamaguchi T, Yoshinaga N, Yazawa T, Gen K, Kitano T. Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinol. 2010; 151:3900-8.
  • [116]Mankiewicz JL, Godwin J, Holler BL, Turner PM, Murashige R, Shamey R et al.. Masculinizing effect of background color and cortisol in a flatfish with environmental sex-determination. Integr Comp Biol. 2013; 53:755-65.
  • [117]Yamamoto Y, Hattori RS, Kitahara A, Kimura H, Yamashita M, Strussmann CA. Thermal and endocrine regulation of gonadal apoptosis during sex differentiation in pejerrey Odontesthes bonariensis. Sex Dev. 2013; 7:316-24.
  • [118]Tokarz J, Norton W, Möller G, de Angelis MH, Adamski J. Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS ONE. 2013; 8: Article ID e54851
  • [119]Nozu R, Nakamura M. Cortisol administration induces sex change from ovary to testis in the protogynous wrasse, Halichoeres trimaculatus. Sex Dev. 2015; 9:118-24.
  • [120]Solomon-Lane TK, Crespi EJ, Grober MS. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change. Front Neurosci. 2013; 7:210.
  • [121]Godwin JR, Thomas P. Sex change and steroid profiles in the protandrous anemonefish Amphiprion melanopus (Pomacentridae, Teleostei). Gen Comp Endocrinol. 1993; 91:144-57.
  • [122]Herpin A, Schartl M. Sex determination: switch and suppress. Curr Biol. 2011; 21:R656-9.
  • [123]Wilhelm D, Palmer S, Koopman P. Sex determination and gonadal development in mammals. Physiol Rev. 2007; 87:1-28.
  • [124]Kobayashi Y, Nagahama Y, Nakamura M. Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev. 2013; 7:115-25.
  • [125]Crespo B, Lan-Chow-Wing O, Rocha A, Zanuy S, Gómez A. foxl2 and foxl3 are two ancient paralogs that remain fully functional in teleosts. Gen Comp Endocrinol. 2013; 194:81-93.
  • [126]Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J et al.. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell. 2009; 139:1130-42.
  • [127]Li M-H, Yang H-H, Li M-R, Sun Y-L, Jiang X-L, Xie Q-P et al.. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs. Endocrinol. 2013; 154:4814-25.
  • [128]Wang DS, Kobayashi T, Zhou LY, Paul-Prasanth B, Ijiri S, Sakai F et al.. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with Ad4 binding protein/steroidogenic factor 1. Mol Endocrinol. 2006; 21:712-25.
  • [129]Herpin A, Schartl M. Dmrt1 genes at the crossroads: a widespread and central class of sexual development factors in fish. FEBS J. 2011; 278:1010-9.
  • [130]Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet. 2012; 13:163-74.
  • [131]Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D. DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature. 2011; 476:101-4.
  • [132]Minkina A, Matson CK, Lindeman RE, Ghyselinck NB, Bardwell VJ, Zarkower D. DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell. 2014; 29:511-20.
  • [133]Alam MA, Kobayashi Y, Horiguchi R, Hirai T, Nakamura M. Molecular cloning and quantitative expression of sexually dimorphic markers Dmrt1 and Foxl2 during female-to-male sex change in Epinephelus merra. Gen Comp Endocrinol. 2008; 157:75-85.
  • [134]Bhandari RK, Komuro H, Nakamura S, Higa M, Nakamura M. Gonadal restructuring and correlative steroid hormone profiles during natural sex change in protogynous honeycomb grouper (Epinephelus merra). Zool Sci. 2003; 20:1399-404.
  • [135]Kobayashi Y, Horiguchi R, Nozu R, Nakamura M. Expression and localization of forkhead transcriptional factor 2 (Foxl2) in the gonads of protogynous wrasse, Halichoeres trimaculatus. Biol Sex Differ. 2010; 1:3.
  • [136]Tevosian SG. Genetic control of ovarian development. Sex Dev. 2013; 7:33-45.
  • [137]Böhne A, Heule C, Boileau N, Salzburger W. Expression and sequence evolution of aromatase cyp19a1 and other sexual development genes in East African cichlid fishes. Mol Biol Evol. 2013; 30:2268-85.
  • [138]Yao HHC, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A et al.. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn. 2004; 230:210-5.
  • [139]Chassot A-A, Gregoire EP, Lavery R, Taketo MM, de Rooij DG, Adams IR et al.. RSPO1/β-catenin signaling pathway regulates oogonia differentiation and entry into meiosis in the mouse fetal ovary. PLoS ONE. 2011; 6: Article ID e25641
  • [140]Wu GC, Chang CF. wnt4 is associated with the development of ovarian tissue in the protandrous black porgy, Acanthopagrus schlegeli. Biol Reprod. 2009; 81:1073-82.
  • [141]Nicol B, Guerin A, Fostier A, Guiguen Y. Ovary-predominant wnt4 expression during gonadal differentiation is not conserved in the rainbow trout (Oncorhynchus mykiss). Mol Reprod Dev. 2011; 79:51-63.
  • [142]Zhou L, Charkraborty T, Yu X, Wu L, Liu G, Mohapatra S et al.. R-spondins are involved in the ovarian differentiation in a teleost, medaka (Oryzias latipes). BMC Dev Biol. 2011; 12:36.
  • [143]Vizziano-Cantonnet D, Baron D, Mahè S, Cauty C, Fostier A, Guiguen Y. Estrogen treatment up-regulates female genes but does not suppress all early testicular markers during rainbow trout male-to-female gonadal transdifferentiation. J Mol Endocrinol. 2008; 41:277-88.
  • [144]Lau EL, Lee MF, Chang CF. Conserved sex-specific timing of meiotic initiation during sex differentiation in the protandrous black porgy Acanthopagrus schlegelii. Biol Reprod. 2013;88:150–0.
  • [145]Feng R, Fang L, Cheng Y, He X, Jiang W, Dong R et al.. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus). Sci Rep. 2015; 5:10131.
  • [146]Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S et al.. Retinoid signaling determines germ cell fate in mice. Science. 2006; 312:596-600.
  • [147]MacLean G, Li H, Metzger D, Chambon P, Petkovich M. Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice. Endocrinol. 2007; 148:4560-7.
  • [148]Li H, MacLean G, Cameron D, Clagett-Dame M, Petkovich M. Cyp26b1 expression in murine Sertoli cells is required to maintain male germ cells in an undifferentiated state during embryogenesis. PLoS ONE. 2008; 4: Article ID e7501
  • [149]Venkatesh B, Kirkness EF, Loh Y-H, Halpern AL, Lee AP, Johnson J et al.. Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biol. 2007; 5: Article ID e101
  • [150]Muenzner M, Tuvia N, Deutschmann C, Witte N, Tolkachov A, Valai A et al.. Retinol-binding protein 4 and its membrane receptor STRA6 control adipogenesis by regulating cellular retinoid homeostasis and retinoic acid receptor α activity. Mol Cell Biol. 2013; 33:4068-82.
  • [151]Kashimada K, Svingen T, Feng C-W, Pelosi E, Bagheri-Fam S, Harley VR et al.. Antagonistic regulation of Cyp26b1 by transcription factors SOX9/SF1 and FOXL2 during gonadal development in mice. FASEB J. 2011; 25:3561-9.
  • [152]Zhang Y, Zhang S, Liu Z, Zhang L, Zhang W. Epigenetic modifications during sex change repress gonadotropin stimulation of Cyp19a1a in a teleost ricefield eel (Monopterus albus). Endocrinol. 2013; 154:2881-90.
  • [153]Navarro-Martín L, Viñas J, Ribas L, Díaz N, Gutiérrez A, Di Croce L et al.. DNA methylation of the gonadal aromatase (cyp19a) promoter is involved in temperature-dependent sex ratio shifts in the European sea bass. PLoS Genet. 2011; 7: Article ID e1002447
  • [154]Stromqvist M, Tooke N, Brunstrom B. DNA methylation levels in the 5’ flanking region of the vitellogenin I gene in liver and brain of adult zebrafish (Danio rerio)—sex and tissue differences and effects of 17 alpha-ethinylestradiol exposure. Aquat Toxicol. 2010; 98:275-81.
  • [155]Zhong H, Xiao J, Chen W, Zhou Y, Tang Z, Guo Z et al.. DNA methylation of pituitary growth hormone is involved in male growth superiority of Nile tilapia (Oreochromis niloticus). Comp Biochem Physiol B Biochem Mol Biol. 2014; 171:42-8.
  • [156]Piferrer F. Epigenetics of sex determination and gonadogenesis. Dev Dyn. 2013; 242:360-70.
  • [157]Wen AY, You F, Sun P, Li J, Xu DD, Wu ZH et al.. CpG methylation of dmrt1and cyp19apromoters in relation to their sexual dimorphic expression in the Japanese flounder Paralichthys olivaceus. J Fish Biol. 2013; 84:193-205.
  • [158]Hiraki T, Takeuchi A, Tsumaki T, Zempo B, Kanda S, Oka Y et al.. Female-specific target sites for both oestrogen and androgen in the teleost brain. Proc R Soc Lond B Biol Sci. 2012; 279:5014-23.
  • [159]Schunter C, Vollmer SV, Macpherson E, Pascual M. Transcriptome analyses and differential gene expression in a non-model fish species with alternative mating tactics. BMC Genomics. 2013; 15:167.
  • [160]Soneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA-seq data. BMC bioinformatics. 2013; 14:91.
  • [161]Diotel N, Do Rego J-L, Anglade I, Vaillant C, Pellegrini E, Vaudry H et al.. The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci. 2011; 5:137.
  • [162]Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Mérot Y et al.. Aromatase, brain sexualization and plasticity: the fish paradigm. Eur J Neurosci. 2010; 32:2105-15.
  • [163]Marsh-Hunkin KE, Heinz HM, Hawkins MB, Godwin J. Estrogenic control of behavioral sex change in the bluehead wrasse, Thalassoma bifasciatum. Integr Comp Biol. 2013; 53:951-9.
  • [164]Schulte S, Stoffel W. Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci U S A. 1993; 90:10265-9.
  • [165]Bosio A, Binczek E, Le Beau MM, Fernald AA, Stoffel W. The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): cloning, characterization, and assignment to human chromosome 4, band q26. Genomics. 1996; 34:69-75.
  • [166]Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K et al.. Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell. 1996; 86:209-19.
  • [167]Zöller I, Büssow H, Gieselmann V, Eckhardt M. Oligodendrocyte-specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT-deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level. Glia. 2005; 52:190-8.
  • [168]Takanaga H, Mackenzie B, Suzuki Y, Hediger MA. Identification of mammalian proline transporter SIT1 (SLC6A20) with characteristics of classical system imino. J Biol Chem. 2005; 280:8974-84.
  • [169]Kowalczuk S, Bröer A, Munzinger M, Tietze N, Klingel K, Bröer S. Molecular cloning of the mouse IMINO system: an Na+− and Cl—dependent proline transporter. Biochem J. 2005; 386:417-22.
  • [170]Bröer S. The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int. 2006; 48:559-67.
  • [171]Wyse ATS, Netto CA. Behavioral and neurochemical effects of proline. Metab Brain Dis. 2011; 26:159-72.
  • [172]Goodson JL, Bass AH. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res Rev. 2001; 35:246-65.
  • [173]Oka Y. Three types of gonadotrophin-releasing hormone neurones and steroid-sensitive sexually dimorphic kisspeptin neurones in teleosts. J Neuroendocrinol. 2009; 21:334-8.
  • [174]Godwin J, Thompson R. Nonapeptides and social behavior in fishes. Horm Behav. 2012; 61:230-8.
  • [175]Mechaly AS, Viñas J, Piferrer F. The kisspeptin system genes in teleost fish, their structure and regulation, with particular attention to the situation in Pleuronectiformes. Gen Comp Endocrinol. 2013; 188:258-68.
  • [176]Godwin J, Sawby R, Warner RR, Crews D, Grober MS. Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. Brain Behav Evol. 2000; 55:77-84.
  • [177]Black MP, Reavis RH, Grober MS. Socially induced sex change regulates forebrain isotocin in Lythrypnus dalli. Neuroreport. 2004; 15:185-9.
  • [178]Albalat R, Brunet F, Laudet V, Schubert M. Evolution of retinoid and steroid signaling: vertebrate diversification from an amphioxus perspective. Genome Biol Evol. 2011; 3:985-1005.
  • [179]Nagahama Y. 17α,20β-Dihydroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: mechanisms of synthesis and action. Steroids. 1997; 62:190-6.
  • [180]Huang W, Zhou L, Li Z, Gui J-F. Expression pattern, cellular localization and promoter activity analysis of ovarian aromatase (Cyp19a1a) in protogynous hermaphrodite red-spotted grouper. Mol Cell Endocrinol. 2009; 307:224-36.
  • [181]Zhang Y, Zhang W, Zhang L, Zhu T, Tian J, Li X et al.. Two distinct cytochrome P450 aromatases in the orange-spotted grouper (Epinephelus coioides): cDNA cloning and differential mRNA expression. J Steroid Biochem Mol Biol. 2004; 92:39-50.
  • [182]Baron D, Houlgatte R, Fostier A, Guiguen Y. Large-scale temporal gene expression profiling during gonadal differentiation and early gametogenesis in rainbow trout. Biol Reprod. 2005; 73:959-66.
  • [183]Alam MA, Kobayashi Y, Hirai T, Nakamura M. Isolation, characterization and expression analyses of FSH receptor in protogynous grouper. Comp Biochem Physiol A Physiol. 2010; 156:364-71.
  • [184]Miyake Y, Sakai Y, Kuniyoshi H. Molecular cloning and expression profile of sex-specific genes, Figla and Dmrt1, in the protogynous hermaphroditic fish, Halichoeres poecilopterus. Zool Sci. 2012; 29:690-710.
  • [185]Shen X, Cui J, Yang G, Gong Q, Gu Q. Expression detection of DMRTs and two sox9 genes in Takifugu rubripes (Tetraodontidae, Vertebrata). J Ocean Univ China. 2007; 6:182-6.
  • [186]Shin HS, An KW, Park MS, Jeong MH, Choi CY. Quantitative mRNA expression of sox3 and DMRT1 during sex reversal, and expression profiles after GnRHa administration in black porgy, Acanthopagrus schlegeli. Comp Biochem Physiol B Biochem Mol Biol. 2009; 154:150-6.
  • [187]Xia W, Zhou L, Yao B, Li C-J, Gui J-F. Differential and spermatogenic cell-specific expression of DMRT1 during sex reversal in protogynous hermaphroditic groupers. Mol Cell Endocrinol. 2007; 263:156-72.
  • [188]Wang DS, Zhou LY, Kobayashi T, Matsuda M, Shibata Y, Sakai F et al.. Doublesex- and Mab-3-related transcription factor-1 repression of aromatase transcription, a possible mechanism favoring the male pathway in tilapia. Endocrinol. 2010; 151:1331-40.
  • [189]Klüver N, Pfennig F, Pala I, Storch K, Schlieder M, Froschauer A et al.. Differential expression of anti-Müllerian hormone (amh) and anti-Müllerian hormone receptor type II (amhrII) in the teleost medaka. Dev Dyn. 2007; 236:271-81.
  • [190]Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nagahama Y, Nakamura M. Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn. 2013; 242:388-99.
  • [191]Degani G. Expression of SOX3 and SOX9 genes in gonads of blue gourami. Adv Biol Chem. 2014; 4:322-30.
  • [192]Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin TI et al.. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun. 2014; 5:4157.
  • [193]Liu Q, Lu H, Zhang L, Xie J, Shen W, Zhang W. Homologues of sox8 and sox10 in the orange-spotted grouper Epinephelus coioides: sequences, expression patterns, and their effects on cyp19a1a promoter activities in vitro. Comp Biochem Physiol B Biochem Mol Biol. 2012; 163:86-95.
  • [194]Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B. Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol. 2001; 231:149-63.
  • [195]Yokoi H, Kobayashi T, Tanaka M, Nagahama Y, Wakamatsu Y, Takeda H et al.. Sox9 in a teleost fish, medaka (Oryzias latipes): evidence for diversified function of Sox9 in gonad differentiation. Mol Reprod Dev. 2002; 63:5-16.
  • [196]Du Q-Y, Wang F-Y, Hua H-Y, Chang Z-J. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio. J Genet. 2007; 86:85-91.
  • [197]Nakamoto M, Wang D-S, Suzuki A, Matsuda M, Nagahama Y, Shibata N. Dax1 suppresses P450arom expression in medaka ovarian follicles. Mol Reprod Dev. 2007;74:1239–46.
  文献评价指标  
  下载次数:64次 浏览次数:28次