期刊论文详细信息
Basic and Clinical Andrology
“Breaking news” from spermatids
Anne Gouraud1  Marc-André Brazeau1  Marie-Chantal Grégoire1  Olivier Simard1  Julien Massonneau1  Mélina Arguin1  Guylain Boissonneault1 
[1] Dept of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Pavillon Z8, 3201 Jean-Mignault St, Sherbrooke, Quebec J1E 4K8, Canada
关键词: Oxidative stress;    Apoptosis;    Topoisomerase;    Torsional stress;    DNA break;    Chromatin remodeling;    Spermiogenesis;   
Others  :  795139
DOI  :  10.1186/2051-4190-23-11
 received in 2013-06-04, accepted in 2013-08-26,  发布年份 2013
PDF
【 摘 要 】

During the haploid phase of spermatogenesis, spermatids undergo a complex remodeling of the paternal genome involving the finely orchestrated replacement of histones by the highly-basic protamines. The associated striking change in DNA topology is characterized by a transient surge of both single- and double-stranded DNA breaks in the whole population of spermatids which are repaired before spermiation. These transient DNA breaks are now considered part of the normal differentiation program of these cells. Despite an increasing interest in the study of spermiogenesis in the last decade and the potential threat to the haploid genome, the origin of these DNA breaks still remains elusive. This review briefly outlines the current hypotheses regarding possible mechanisms that may lead to such transient DNA fragmentation including torsional stress, enzyme-induced breaks, apoptosis-like processes or oxidative stress. A better understanding of the origin of these DNA breaks will lead to further investigations on the genetic instability and mutagenic potential induced by the chromatin remodeling.

【 授权许可】

   
2013 Gouraud et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705082110497.pdf 345KB PDF download
【 参考文献 】
  • [1]Ward WS, Coffey DS: DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 1991, 44:569-574.
  • [2]Sadeghi MR, Hodjat M, Lakpour N, Arefi S, Amirjannati N, Modarresi T, Jadda HH, Akhondi MM: Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection. Avicenna J Med Biotechnol 2009, 1:173-180.
  • [3]Oliva R, Oliva GI R: Protamines and male infertility. Hum Reprod Update 2006, 12:417-435.
  • [4]Sonnack V, Failing K, Bergmann M, Steger K: Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia 2002, 34:384-390.
  • [5]Bikond Nkoma G, Leduc F, Jaouad L, Boissonneault G: Electron microscopy analysis of histone acetylation and DNA strand breaks in mouse elongating spermatids using a dual labelling approach. Andrologia 2010, 42:322-325.
  • [6]Oliva R, Mezquita C: Histone H4 hyperacetylation and rapid turnover of its acetyl groups in transcriptionally inactive rooster testis spermatids. Nucleic Acids Res 1982, 10:8049-8059.
  • [7]Christensen ME, Rattner JB, Dixon GH: Hyperacetylation of histone H4 promotes chromatin decondensation prior to histone replacement by protamines during spermatogenesis in rainbow trout. Nucleic Acids Res 1984, 12:4575-4592.
  • [8]Grimes SR, Henderson N: Hyperacetylation of histone H4 in rat testis spermatids. Exp Cell Res 1984, 152:91-97.
  • [9]Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S: Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 2000, 79:950-960.
  • [10]Görisch SM, Wachsmuth M, Tóth KF, Lichter P, Rippe K: Histone acetylation increases chromatin accessibility. J Cell Sci 2005, 118:5825-5834.
  • [11]Lee J-H, Choy ML, Ngo L, Foster SS, Marks PA: Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 2010, 107:14639-14644.
  • [12]Namdar M, Perez G, Ngo L, Marks PA: Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 2010, 107:20003-20008.
  • [13]Marcon L, Boissonneault G: Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 2004, 70:910-918.
  • [14]Laberge R-M, Boissonneault G: On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 2005, 73:289-296.
  • [15]Meyer-Ficca ML, Scherthan H, Bürkle A, Meyer RG: Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 2005, 114:67-74.
  • [16]Metzger MJ, McConnell-Smith A, Stoddard BL, Miller AD: Single-strand nicks induce homologous recombination with less toxicity than double-strand breaks using an AAV vector template. Nucleic Acids Res 2011, 39:926-935.
  • [17]Vamvakas S, Vock EH, Lutz WK: On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol 1997, 27:155-174.
  • [18]Glaser RL, Jabs EW: Dear old dad. Sci Aging Knowledge Environ 2004, 2004:1-11.
  • [19]Ellegren H: Characteristics, causes and evolutionary consequences of male-biased mutation. Proc Biol Sci 2007, 274:1-10.
  • [20]Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson S, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WSW, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT: Thorsteinsdottir U, Stefansson K: Rate of de novo mutations and the importance of father’s age to disease risk. Nature 2012, 488:471-475.
  • [21]Makova KD, Yang S, Chiaromonte F: Insertions and Deletions Are Male Biased Too : A Whole-Genome Analysis in Rodents. Genome Res 2004, 14:567-573.
  • [22]Kvikstad EM, Tyekucheva S, Chiaromonte F, Makova KD: A macaque’s-eye view of human insertions and deletions: differences in mechanisms. PLoS Comput Biol 2007, 3:1772-1782.
  • [23]Ward WS, Partin AW, Coffey DS: DNA loop domains in mammalian spermatozoa. Chromosoma 1989, 98:153-159.
  • [24]Lavelle C: DNA torsional stress propagates through chromatin fiber and participates in transcriptional regulation. Nat Struct Mol Biol 2008, 15:123-125.
  • [25]Benham CJ: Torsional stress and local denaturation in supercoiled DNA. Proc Natl Acad Sci U S A 1979, 76:3870-3874.
  • [26]Roca J: Transcriptional inhibition by DNA torsional stress. Transcription 2011, 2:82-85.
  • [27]Palecek E: Local supercoil-stabilized DNA structures. Crit Rev Biochem Mol Biol 1991, 26:151-226.
  • [28]Travers A, Muskhelishvili G: DNA supercoiling - a global transcriptional regulator for enterobacterial growth? Nat Rev Microbiol 2005, 3:157-169.
  • [29]Wang G, Christensen LA, Vasquez KM: Z-DNA-forming sequences generate large-scale deletions in mammalian cells. Proc Natl Acad Sci U S A 2006, 103:1-6.
  • [30]Zhao J, Bacolla A, Wang G, Vasquez KM: Non-B DNA structure-induced genetic instability and evolution. Cell Mol Life Sci 2010, 67:43-62.
  • [31]Champoux JJ: DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001, 70:369-413.
  • [32]Cobb J, Miyaike M, Kikuchi A, Handel MA: Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation. Chromosoma 1999, 108:412-425.
  • [33]Leduc F, Maquennehan V, Nkoma GB, Boissonneault G: DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 2008, 78:324-332.
  • [34]Deweese JE, Osheroff N: The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 2009, 37:738-748.
  • [35]Nitiss KC, Malik M, He X, White SW, Nitiss JL: Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage. Proc Natl Acad Sci U S A 2006, 103:8953-8958.
  • [36]Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG: Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 2011, 84:900-909.
  • [37]Keeney S: Spo11 and the formation of DNA double-strand breaks in meiosis. Genome Dyn Stab 2008, 2:81-123.
  • [38]Neale MJ, Pan J, Keeney S: Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 2005, 436:1053-1057.
  • [39]Griswold lab/Center for Reproductive Biology: Microarray expression from isolated germ cell types. [http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2736 webcite]
  • [40]Feinstein-Rotkopf Y, Arama E: Can’t live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009, 14:980-995.
  • [41]Celik-Ozenci C, Sahin Z, Ustunel I, Akkoyunlu G, Erdogru T, Korgun ET, Baykara M, Demir R: The Fas system may have a role in male reproduction. Fertil Steril 2006, 85(Suppl 1):1168-1178.
  • [42]Toné S, Sugimoto K, Tanda K, Suda T, Uehira K, Kanouchi H, Samejima K, Minatogawa Y, Earnshaw WC: Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp Cell Res 2007, 313:3635-3644.
  • [43]Wen W, Zhu F, Zhang J, Keum Y-S, Zykova T, Yao K, Peng C, Zheng D, Cho Y-Y, Ma W, Bode AM, Dong Z: MST1 promotes apoptosis through phosphorylation of histone H2AX. J Biol Chem 2010, 285:39108-39116.
  • [44]Widlak P, Garrard WT: Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 2005, 94:1078-1087.
  • [45]Cavalcanti MCO, Steilmann C, Failing K, Bergmann M, Kliesch S, Weidner W, Steger K: Apoptotic gene expression in potentially fertile and subfertile men. Mol Hum Reprod 2011, 17:415-420.
  • [46]Widlak P, Li P, Wang X, Garrard WT: Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 2000, 275:8226-8232.
  • [47]Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N: Dicer is required for haploid male germ cell differentiation in mice. PloS One 2011, 6:e24821.
  • [48]Harry BL, Nakagawa A, Xue D: Dicing up chromosomes: The unexpected role of Dicer in apoptosis. Cell Cycle 2010, 9:4772-4773.
  • [49]Arama E, Agapite J, Steller H: Caspase activity and a specific cytochrome C are required for sperm differentiation in Drosophila. Dev Cell 2003, 4:687-697.
  • [50]Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR: The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993, 75:641-652.
  • [51]Blanco-Rodríguez J, Martínez-García C: Apoptosis is physiologically restricted to a specialized cytoplasmic compartment in rat spermatids. Biol Reprod 1999, 61:1541-1547.
  • [52]Grégoire M-C, Massonneau J, Simard O, Gouraud A, Brazeau M-A, Arguin M, Leduc F, Boissonneault G: Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod 2013. Epub, in press
  • [53]Cocuzza M, Sikka SC, Athayde KS, Agarwal A: Clinical relevance of oxidative stress and sperm chromatin damage in male infertility: an evidence based analysis. Int Braz J Urol 2007, 33:603-621.
  • [54]Aitken RJ, De Iuliis GN: On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 2010, 16:3-13.
  • [55]Kryston TB, Georgiev AB, Pissis P, Georgakilas AG: Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011, 711:193-201.
  • [56]Dedon PC: The chemical toxicology of 2-deoxyribose oxidation in DNA. Chem Research Toxicol 2008, 21:206-219.
  • [57]De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, Nixon B, Aitken RJ: DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod 2009, 81:517-524.
  • [58]Bánfi B, Molnár G, Maturana A, Steger K, Hegedûs B, Demaurex N, Krause KH: A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes. J Biol Chem 2001, 276:37594-37601.
  • [59]Sabeur K, Ball BA: Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction 2007, 134:263-270.
  • [60]Steger K: Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 1999, 199:471-487.
  • [61]Kothari S, Thompson A, Agarwal A, Du Plessis SS: Free radicals: their beneficial and detrimental effects on sperm function. Indian J Exp Biol 2010, 48:425-435.
  • [62]Valavanidis A, Vlachogianni T, Fiotakis C: 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health Carcinog Ecotoxicol Rev 2009, 27:120-139.
  • [63]Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U: Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod 1999, 4:31-37.
  文献评价指标  
  下载次数:10次 浏览次数:8次