期刊论文详细信息
Biotechnology for Biofuels
Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition
Emma R Master1  Maija Tenkanen3  Jukka Seppälä2  Minna Juvonen3  Maryam Foumani1  Arja-Helena Vesterinen2  Thu V Vuong1 
[1]Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
[2]Department of Biotechnology and Chemical Technology, Aalto University, Kemistintie 1 D1, Espoo 02150, Finland
[3]Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
关键词: Protein engineering;    Substrate inhibition;    Oxidation;    Substrate specificity;    Xylo-oligosaccharide;    Cello-oligosaccharide;    Sarocladium strictum;    Gluco-oligosaccharide oxidase;   
Others  :  797812
DOI  :  10.1186/1754-6834-6-148
 received in 2013-06-07, accepted in 2013-10-04,  发布年份 2013
PDF
【 摘 要 】

Background

The oxidation of carbohydrates from lignocellulose can facilitate the synthesis of new biopolymers and biochemicals, and also reduce sugar metabolism by lignocellulolytic microorganisms, reserving aldonates for fermentation to biofuels. Although oxidoreductases that oxidize cellulosic hydrolysates have been well characterized, none have been reported to oxidize substituted or branched xylo-oligosaccharides. Moreover, this is the first report that identifies amino acid substitutions leading to GOOX variants with reduced substrate inhibition.

Results

The recombinant wild type gluco-oligosaccharide oxidase (GOOX) from the fungus Sarocladium strictum, along with variants that were generated by site-directed mutagenesis, retained the FAD cofactor, and showed high activity on cello-oligosaccharide and xylo-oligosaccharides, including substituted and branched xylo-oligosaccharides. Mass spectrometric analyses confirmed that GOOX introduces one oxygen atom to oxidized products, and 1H NMR and tandem mass spectrometry analysis confirmed that oxidation was restricted to the anomeric carbon. The A38V mutation, which is close to a predicted divalent ion-binding site in the FAD-binding domain of GOOX but 30 Å away from the active site, significantly increased the kcat and catalytic efficiency of the enzyme on all oligosaccharides. Eight amino acid substitutions were separately introduced to the substrate-binding domain of GOOX-VN (at positions Y72, E247, W351, Q353 and Q384). In all cases, the Km of the enzyme variant was higher than that of GOOX, supporting the role of corresponding residues in substrate binding. Most notably, W351A increased Km values by up to two orders of magnitude while also increasing kcat up to 3-fold on cello- and xylo-oligosaccharides and showing no substrate inhibition.

Conclusions

This study provides further evidence that S. strictum GOOX has broader substrate specificity than the enzyme name implies, and that substrate inhibition can be reduced by removing aromatic side chains in the -2 binding subsite. Of the enzyme variants, W351A might be particularly advantageous when oxidizing oligosaccharides present at high substrate concentrations often experienced in industrial processes.

【 授权许可】

   
2013 Vuong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706081701427.pdf 2419KB PDF download
Figure 7. 135KB Image download
Figure 6. 67KB Image download
Figure 5. 94KB Image download
Figure 4. 58KB Image download
Figure 3. 113KB Image download
Figure 2. 59KB Image download
Figure 1. 51KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B: Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 2013, 6:41. BioMed Central Full Text
  • [2]Henriksson G, Johansson G, Pettersson G: A critical review of cellobiose dehydrogenases. J Biotechnol 2000, 78:93-113.
  • [3]Bankar SB, Bule MV, Singhal RS, Ananthanarayan L: Glucose oxidase-an overview. Biotechnol Adv 2009, 27:489-501.
  • [4]Prongjit M, Sucharitakul J, Wongnate T, Haltrich D, Chaiyen P: Kinetic mechanism of pyranose 2-oxidase from Trametes multicolor. Biochemistry 2009, 48:4170-4180.
  • [5]Whittaker JW: Free radical catalysis by galactose oxidase. Chem Rev 2003, 103:2347-2363.
  • [6]Lee MH, Lai WL, Lin SF, Hsu CS, Liaw SH, Tsai YC: Structural characterization of glucooligosaccharide oxidase from Acremonium strictum. Appl Environ Microbiol 2005, 71:8881-8887.
  • [7]Foumani M, Vuong TV, Master ER: Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum. Biotechnol Bioeng 2011, 108:2261-2269.
  • [8]Summerbell RC, Gueidan C, Schroers HJ, de Hoog GS, Starink M, Rosete YA, Guarro J, Scott JA: Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 2011, 68:139-162.
  • [9]Fan Z, Oguntimein GB, Reilly PJ: Characterization of kinetics and thermostability of Acremonium strictum glucooligosaccharide oxidase. Biotechnol Bioeng 2000, 68:231-237.
  • [10]Lin S-F, Yang T-Y, Inukai T, Yamasaki M, Tsai Y-C: Purification and characterization of a novel glucooligosaccharide oxidase from Acremonium strictum T1. Biochim Biophys Acta 1991, 1118:41-47.
  • [11]van Hellemond EW, Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ: Occurrence and biocatalytic potential of carbohydrate oxidases. Adv Appl Microbiol 2006, 60:17-54.
  • [12]Cruys-Bagger N, Ren G, Tatsumi H, Baumann MJ, Spodsberg N, Andersen HD, Gorton L, Borch K, Westh P: An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose. Biotechnol Bioeng 2012, 109:3199-3204.
  • [13]Fan Z, Wu W, Hildebrand A, Kasuga T, Zhang R, Xiong X: A novel biochemical route for fuels and chemicals production from cellulosic biomass. PLoS One 2012, 7:e31693.
  • [14]Huang CH, Winkler A, Chen CL, Lai WL, Tsai YC, Macheroux P, Liaw SH: Functional roles of the 6-S-cysteinyl, 8alpha-N1-histidyl FAD in glucooligosaccharide oxidase from Acremonium strictum. J Biol Chem 2008, 283:30990-30996.
  • [15]Heuts DP, Winter RT, Damsma GE, Janssen DB, Fraaije MW: The role of double covalent flavin binding in chito-oligosaccharide oxidase from Fusarium graminearum. Biochem J 2008, 413:175-183.
  • [16]Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Stenstrom Y, MacKenzie A, Sorlie M, Horn SJ, Eijsink VG: Cleavage of cellulose by a CBM33 protein. Protein Sci 2011, 20:1479-1483.
  • [17]Nordkvist M, Nielsen PM, Villadsen J: Oxidation of lactose to lactobionic acid by a Microdochium nivale carbohydrate oxidase: kinetics and operational stability. Biotechnol Bioeng 2007, 97:694-707.
  • [18]Kalisz HM, Hecht HJ, Schomburg D, Schmid RD: Effects of carbohydrate depletion on the structure, stability and activity of glucose oxidase from Aspergillus niger. Biochim Biophys Acta 1991, 1080:138-142.
  • [19]Scrutton NS: Identification of covalent flavoproteins and analysis of the covalent link. Methods Mol Biol 1999, 131:181-193.
  • [20]Huang CH, Lai WL, Lee MH, Chen CJ, Vasella A, Tsai YC, Liaw SH: Crystal structure of glucooligosaccharide oxidase from Acremonium strictum: a novel flavinylation of 6-S-cysteinyl, 8alpha-N1-histidyl FAD. J Biol Chem 2005, 280:38831-38838.
  • [21]Nouaille R, Matulova M, Patoprsty V, Delort AM, Forano E: Production of oligosaccharides and cellobionic acid by Fibrobacter succinogenes S85 growing on sugars, cellulose and wheat straw. Appl Microbiol Biotechnol 2009, 83:425-433.
  • [22]Higham CW, Gordon-Smith D, Dempsey CE, Wood PM: Direct 1H NMR evidence for conversion of beta-D-cellobiose to cellobionolactone by cellobiose dehydrogenase from Phanerochaete chrysosporium. FEBS Lett 1994, 351:128-132.
  • [23]Asam MR, Glish GL: Tandem mass spectrometry of alkali cationized polysaccharides in a quadrupole ion trap. J Am Soc Mass Spectr 1997, 8:987-995.
  • [24]Hofmeister GE, Zhou Z, Leary JA: Linkage position determination in lithium-cationized disaccharides: tandem mass spectrometry and semiempirical calculations. J Am Chem Soc 1991, 113:5964-5970.
  • [25]Pasanen S, Janis J, Vainiotalo P: Cello-, malto- and xylooligosaccharide fragmentation by collision-induced dissociation using QIT and FT-ICR mass spectrometry: a systematic study. Int J Mass Spectrom 2007, 263:22-29.
  • [26]Heuts DPHM, Janssen DB, Fraaije MW: Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis. FEBS Lett 2007, 581:4905-4909.
  • [27]LiCata VJ, Allewell NM: Is substrate inhibition a consequence of allostery in aspartate transcarbamylase? Biophys Chem 1997, 64:225-234.
  • [28]Pastell H, Tuomainen P, Virkki L, Tenkanen M: Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 2008, 343:3049-3057.
  • [29]Rantanen H, Virkki L, Tuomainen P, Kabel M, Schols H, Tenkanen M: Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-beta-D-xylanase. Carbohyd Polym 2007, 68:350-359.
  • [30]Koutaniemi S, Guillon F, Tranquet O, Bouchet B, Tuomainen P, Virkki L, Petersen HL, Willats WG, Saulnier L, Tenkanen M: Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. Planta 2012, 236:739-751.
  • [31]Packer NH, Lawson MA, Jardine DR, Redmond JW: A general approach to desalting oligosaccharides released from glycoproteins. Glycoconj J 1998, 15:737-747.
  • [32]Chong SL, Nissila T, Ketola RA, Koutaniemi S, Derba-Maceluch M, Mellerowicz EJ, Tenkanen M, Tuomainen P: Feasibility of using atmospheric pressure matrix-assisted laser desorption/ionization with ion trap mass spectrometry in the analysis of acetylated xylooligosaccharides derived from hardwoods and Arabidopsis thaliana. Anal Bioanal Chem 2011, 401:2995-3009.
  • [33]Domon B, Costello C: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 1988, 5:397-409.
  文献评价指标  
  下载次数:54次 浏览次数:19次