期刊论文详细信息
Biotechnology for Biofuels
Chlorella for protein and biofuels: from strain selection to outdoor cultivation in a Green Wall Panel photobioreactor
Mario R Tredici2  Niccolò Bassi1  Liliana Rodolfi1  Giacomo Sampietro2  Natascia Biondi2  Alessia Guccione2 
[1]Fotosintetica & Microbiologica S.r.l., Via dei Della Robbia 54, Firenze 50132, Italy
[2]Dipartimento di Scienze delle Produzioni Agroalimentari e dell’Ambiente - Sezione di Microbiologia Agraria, Università degli Studi di Firenze, Piazzale delle Cascine 24, Firenze 50144, Italy
关键词: Biofuel;    GWP-II;    Sustainability;    Nitrogen starvation;    Thermotolerance;    Food;    Outdoor cultivation;    Chlorella;   
Others  :  792273
DOI  :  10.1186/1754-6834-7-84
 received in 2013-12-03, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

Chlorella is one of the few microalgae employed for human consumption. It typically has a high protein content, but it can also accumulate high amounts of lipids or carbohydrates under stress conditions and, for this reason, it is of interest in the production of biofuels. High production costs and energy consumption are associated with its cultivation. This work describes a strategy to reduce costs and environmental impact of Chlorella biomass production for food, biofuels and other applications.

Results

The growth of four Chlorella strains, selected after a laboratory screening, was investigated outdoors in a low-cost 0.25 m2 GWP-II photobioreactor. The capacity of the selected strains to grow at high temperature was tested. On the basis of these results, in the nitrogen starvation trials the culture was cooled only when the temperature exceeded 40°C to allow for significant energy savings, and performed in a seawater-based medium to reduce the freshwater footprint. Under nutrient sufficiency, strain CH2 was the most productive. In all the strains, nitrogen starvation strongly reduced productivity, depressed protein and induced accumulation of carbohydrate (about 50%) in strains F&M-M49 and IAM C-212, and lipid (40 - 45%) in strains PROD1 and CH2. Starved cultures achieved high storage product productivities: 0.12 g L−1 d−1 of lipids for CH2 and 0.19 g L−1 d−1 of carbohydrates for F&M-M49. When extrapolated to large-scale in central Italy, CH2 showed a potential productivity of 41 t ha−1 y−1 for biomass, 16 t ha−1 y−1 for protein and 11 t ha−1 y−1 for lipid under nutrient sufficiency, and 8 t ha−1 y−1 for lipid under nitrogen starvation.

Conclusions

The environmental and economic sustainability of Chlorella production was enhanced by growing the organisms in a seawater-based medium, so as not to compete with crops for freshwater, and at high temperatures, so as to reduce energy consumption for cooling. All the four selected strains are good candidates for food or biofuels production in lands unsuitable for conventional agriculture. Chlorella strain CH2 has the potential for more than 80 tonnes of biomass, 32 tonnes of protein and 22 tonnes of lipid per year under favourable climates.

【 授权许可】

   
2014 Guccione et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705025623281.pdf 400KB PDF download
Figure 1. 115KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Spolaore P, Joannis-Cassan C, Duran E, Isambert A: Commercial applications of microalgae. J Biosci Bioeng 2006, 101:87-96.
  • [2]Pulz O, Gross W: Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 2004, 65:635-648.
  • [3]Doucha J, Lívanský K: Production of high-density Chlorella culture grown in fermenters. J Appl Phycol 2012, 24:35-43.
  • [4]Iwamoto H: Industrial production of microalgal cell-mass and secondary products-major industrial species. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 1st edition. Edited by Richmond A. Oxford: Blackwell Publishing; 2004:255-263.
  • [5]Pulz O, Broneske J, Waldeck P: IGV GmbH experience report, industrial production of microalgae under controlled conditions: innovative prospects. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd edition. Edited by Richmond A, Hu Q. Oxford: Wiley; 2013:445-460.
  • [6]Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E: Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 1999, 35:587-598.
  • [7]Görs M, Schumann R, Hepperle D, Karsten U: Quality analysis of commercial Chlorella products used as dietary supplement in human nutrition. J Appl Phycol 2010, 22:265-276.
  • [8]Hibberd DJ: Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 1981, 82:93-119.
  • [9]Becker EW: Micro-algae as a source of protein. Biotechnol Adv 2007, 25:207-210.
  • [10]Liu J, Hu Q: Chlorella: industrial production of cell mass and chemicals. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd edition. Edited by Richmond A, Hu Q. Oxford: Wiley; 2013:329-338.
  • [11]Chacón-Lee TL, González-Mariño GE: Microalgae for “healthy” foods - possibilities and challenges. Compr Rev Food Sci Food Saf 2010, 9:655-675.
  • [12]Petkov G, Garcia G: Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 2007, 35:281-285.
  • [13]Wu ZY, Qu CB, Shi XM: Biochemical system analysis of lutein production by heterotrophic Chlorella pyrenoidosa in a fermentor. Food Technol Biotechnol 2009, 47:450-455.
  • [14]Cho S, Cho S, Fahey GC: Generally Recognized As Safe (GRAS) Notice 000396 . Clarksville, MD: NutraSource; 2011. [http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn000396.pdf webcite]
  • [15]Commission E: Novel Food Catalogue. Brussels: European Commission; 2014. [http://ec.europa.eu/food/food/biotechnology/novelfood/nfnetweb/mod_search/index.cfm webcite]
  • [16]Spoehr HA: Chlorella as a source of food. Proc Am Philos Soc 1951, 95:62-67.
  • [17]Bishop WR, Zubeck HM: Evaluation of microalgae for use as nutraceuticals and nutritional supplements. J Nutr Food 2012, 2:5.
  • [18]Becker EW: Microalgae Biotechnology and Microbiology. Cambridge: Cambridge University Press; 1994.
  • [19]Becker W: Microalgae in human and animal nutrition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology. 1st edition. Edited by Richmond A. Oxford: Blackwell Publishing; 2004:312-351.
  • [20]Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A: Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innovative Food Sci Emerg Technol 2007, 8:433-436.
  • [21]Beheshtipour H, Mortazavian A, Haratian P, Darani K: Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur Food Res Technol 2012, 235:719-728.
  • [22]Beheshtipour H, Mortazavian AM, Mohammadi R, Sohrabvandi S, Khosravi-Darani K: Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks. Compr Rev Food Sci Food Saf 2013, 12:144-154.
  • [23]Fradique M, Batista AP, Cristiana Nunes M, Gouveia L, Bandarra NM, Raymundo A: Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J Sci Food Agric 2010, 90:1656-1664.
  • [24]Morris HJ, Almarales A, Carrillo O, Bermúdez RC: Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour Technol 2008, 99:7723-7729.
  • [25]Draaisma RB, Wijffels RH, Slegers PM, Brentner LB, Roy A, Barbosa MJ: Food commodities from microalgae. Curr Opin Biotechnol 2013, 24:169-177.
  • [26]Norsker NH, Barbosa MJ, Vermue MH, Wijffels RH: Microalgal production - a close look at the economics. Biotechnol Adv 2011, 29:24-27.
  • [27]Wijffels RH, Barbosa MJ: An outlook on microalgal biofuels. Science 2010, 329:796-799.
  • [28]Malcata FX: Microalgae and biofuels: a promising partnership? Trends Biotechnol 2011, 29:542-549.
  • [29]Hirano A, Ueda R, Hirayama S, Ogushi Y: CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 1997, 22:137-142.
  • [30]Maršálková B, Širmerová M, Kuřec M, Brányik T, Brányiková I, Melzoch K, Zachleder V: Microalgae Chlorella sp. as an alternative source of fermentable sugars. Chem Eng Trans 2010, 21:1279-1284.
  • [31]Feng PZ, Deng ZY, Hu ZY, Fan L: Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 2011, 102:10577-10584.
  • [32]Münkel R, Schmid-Staiger U, Werner A, Hirth T: Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Biotechnol Bioeng 2013, 110:2882-2893.
  • [33]Moheimani NR: Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J Appl Phycol 2013, 25:167-176.
  • [34]Přibyl P, Cepák V, Zachleder V: Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 2012, 94:549-561.
  • [35]Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M: Microalgae - novel highly efficient starch producers. Biotechnol Bioeng 2011, 108:766-776.
  • [36]Brennan L, Owende P: Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energy Rev 2010, 14:557-577.
  • [37]Mata TM, Martins AA, Caetano NS: Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 2010, 14:217-232.
  • [38]Wijffels RH, Barbosa MJ, Eppink MHM: Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod Biorefin 2010, 4:287-295.
  • [39]Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N: Biofuels from microalgae. Biotechnol Prog 2008, 24:815-820.
  • [40]Prommuak C, Pavasant P, Quitain AT, Goto M, Shotipruk A: Simultaneous production of biodiesel and free lutein from Chlorella vulgaris. Chem Eng Technol 2013, 36:733-739.
  • [41]Subhadra B, Grinson G: Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 2011, 91:2-13.
  • [42]Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D: Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 2011, 102:10163-10172.
  • [43]Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR: Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 2009, 102:100-112.
  • [44]Chini Zittelli G, Rodolfi L, Bassi N, Biondi N, Tredici MR: Photobioreactors for microalgal biofuel production. In Algae for Biofuels and Energy. Edited by Borowitzka MA, Moheimani NR. Dordrecht: Springer; 2013:115-131.
  • [45]Chini Zittelli G, Biondi N, Rodolfi L, Tredici MR: Photobioreactors for mass production of microalgae. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd edition. Edited by Richmond A, Hu Q. Oxford: Wiley; 2013:225-266.
  • [46]Borowitzka MA, Moheimani NR: Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 2013, 18:13-25.
  • [47]Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML: Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 2010, 101:1406-1413.
  • [48]Biondi N, Bassi N, Chini Zittelli G, De Faveri D, Giovannini A, Rodolfi L, Allevi C, Macrì C, Tredici MR: Nannochloropsissp. F&M-M24: oil production, effect of mixing on productivity and growth in an industrial wastewater. Environ Prog Sustainable Energy 2013, 32:846-853.
  • [49]Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I: Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 1992, 31:3345-3348.
  • [50]Béchet Q, Muñoz R, Shilton A, Guieysse B: Outdoor cultivation of temperature-tolerant Chlorella sorokiniana in a column photobioreactor under low power-input. Biotechnol Bioeng 2013, 110:118-126.
  • [51]Tredici MR, Chini Zittelli G, Rodolfi L: Photobioreactors. In Encyclopedia of Industrial Biotechnology. Edited by Flickinger MC, Anderson S. New York, NY: John Wiley & Sons; 2010:1-15.
  • [52]Ong SC, Kao CY, Chiu SY, Tsai MT, Lin CS: Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 2010, 101:2880-2883.
  • [53]de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y: Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 2008, 99:4980-4989.
  • [54]Morita M, Watanabe Y, Saiki H: High photosynthetic productivity of green microalga Chlorella sorokiniana. Appl Biochem Biotechnol 2000, 87:203-218.
  • [55]Han F, Wang W, Li Y, Shen G, Wan M, Wang J: Changes of biomass, lipid content and fatty acids composition under a light–dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Bioresour Technol 2013, 132:182-189.
  • [56]Bondioli P, Della Bella L, Rivolta G, Chini Zittelli G, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR: Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 2012, 114:567-572.
  • [57]Recht L, Zarka A, Boussiba S: Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis. Appl Biochem Biotechnol 2012, 94:1495-1503.
  • [58]Spoehr HA, Milner HW: The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 1949, 24:120-149.
  • [59]Ho SH, Chen CY, Chang JS: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 2012, 113:244-252.
  • [60]Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA: Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 2011, 88:3331-3335.
  • [61]Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A: Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 2008, 54:621-639.
  • [62]Yeh KL, Chang JS: Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresour Technol 2012, 105:120-127.
  • [63]Illman AM, Scragg AH, Shales SW: Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 2000, 27:631-635.
  • [64]Xu H, Miao XL, Wu QY: High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 2006, 126:499-507.
  • [65]Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG: Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 2009, 1:47-58.
  • [66]Miao XL, Wu QY: Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 2006, 97:841-846.
  • [67]Li XF, Xu H, Wu QY: Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 2007, 98:764-771.
  • [68]Zhou XP, Xia L, Ge HM, Zhang DL, Hu CX: Feasibility of biodiesel production by microalgae Chlorella sp. (FACHB-1748) under outdoor conditions. Bioresour Technol 2013, 138:131-135.
  • [69]Tredici MR, Rodolfi L, Sampietro G, Bassi N: Low-cost photobioreactors for microalgae cultivation. 2011. Patent WO2011/013104 (to Fotosintetica & Microbiologica)
  • [70]Huang G, Chen F, Wei D, Zhang X, Chen G: Biodiesel production by microalgal biotechnology. Appl Energy 2010, 87:38-46.
  • [71]Richardson JW, Johnson MD, Outlaw JL: Economic comparison of open pond raceways to photo bio-reactors for profitable production of algae for transportation fuels in the Southwest. Algal Res 2012, 1:93-100.
  • [72]Tredici MR: Photobiology of microalgae mass cultures. Biofuels 2010, 1:143-162.
  • [73]Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY: Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbiol 1979, 111:1-61.
  • [74]Guillard RRL, Ryther JH: Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 1962, 8:229-239.
  • [75]Tredici MR, Rodolfi L: Reactor for industrial culture of photosynthetic micro-organisms. Patent 2004. WO2004/074423 (to Università degli Studi di Firenze)
  • [76]Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • [77]Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F: A colorimetric method for the determination of sugars and related substances. Anal Chem 1956, 168:167.
  • [78]Marsh JB, Weinstein DB: Simple charring method for determination of lipids. J Lipid Res 1966, 7:574-576.
  • [79]Ferree MA, Shannon RD: Evaluation of a second derivative UV/visible spectroscopy technique for nitrate and total nitrogen analysis of wastewater samples. Water Res 2001, 35:327-332.
  • [80]Kreith F, Kreider JF: Principles of Solar Engineering. Washington, DC: Hemisphere Publishing Corporation; 1978:37-82.
  文献评价指标  
  下载次数:26次 浏览次数:70次