期刊论文详细信息
Biology Direct
A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES)
Marcelino Campos2  Carlos Llorens1  José M. Sempere2  Ricardo Futami1  Irene Rodriguez5  Purificación Carrasco4  Rafael Capilla1  Amparo Latorre3  Teresa M. Coque5  Andres Moya3  Fernando Baquero5 
[1] Biotechvana, Valencia, CEEI Building, Benjamin Franklin Av. 12, Valencia Technological Park, Paterna, 46980, Spain
[2] Department of Information Systems and Computation (DSIC), Polytechnic University of Valencia, Camino de Vera, Valencia, 46022, Spain
[3] Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Avenida de Cataluña 21, Valencia, 46020, Spain
[4] Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, Paterna, 46980, Valencia, Spain
[5] Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
关键词: Essential nesting;    Antibiotic resistance;    P-system;    Membrane computing;   
Others  :  1225803
DOI  :  10.1186/s13062-015-0070-9
 received in 2015-04-08, accepted in 2015-07-31,  发布年份 2015
【 摘 要 】

Background

Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem.

Results

In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host’s associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis.

Conclusions

The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with feedback reciprocity among the different units of selection influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary, with different parameters, until a correct model description of the process in the real world is convincingly approached. ARES can be accessed at http//gydb.org/ares.

Reviewers

This article was reviewed by Eugene V. Koonin, and Eric Bapteste.

【 授权许可】

   
2015 Campos et al.

附件列表
Files Size Format View
Fig. 2. 87KB Image download
Fig. 1. 113KB Image download
Fig. 2. 87KB Image download
Fig. 1. 113KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 1.

Fig. 2.

【 参考文献 】
  • [1]Baquero F, Coque TM, Canton R: Counteracting antibiotic resistance: breaking barriers among antibacterial strategies. Expert Opin Ther Targets 2014, 18:851-61.
  • [2]Baquero F, Lanza VF, Canton R, Coque TM: Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014, 8:223-239.
  • [3]Baquero F, Coque TM, de la Cruz F: Ecology and evolution as targets: the need for novel eco-evo drugs and strategies to fight antibiotic resistance. Antimicrob Agents Chemother 2011, 55:3649-60.
  • [4]Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, et al.: Ready for a world without antibiotics? The pensieres antibiotic resistance call to action. Antimicrob Resist Infect Control 2012, 1:11. BioMed Central Full Text
  • [5]Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al.: Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013, 13:1057-98.
  • [6]G8-Science-Ministers-Statement. 2013.. https://www.gov.uk/government/news/g8-science-ministers-statement webcite
  • [7]Levy SB, Marshall B: Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 2004, 10:S122-9.
  • [8]Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, et al.: The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 2013, 13:155-65.
  • [9]Marshall BM, Levy SB: Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 2011, 24:718-33.
  • [10]Marshall BM, Ochieng DJ, Levy SB: Commensals: underappreciated reservoir of antibiotic resistance. Microbe 2009, 4:231-8.
  • [11]Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G: The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337:1107-11.
  • [12]Heuer H, Schmitt H, Smalla K: Antibiotic resistance gene spread due to manure application on agricultural fields. Curr Opin Microbiol 2011, 14:236-43.
  • [13]Teillant A, Laxminarayan R: Economics of Antibiotic Use in U.S. Swine and Poultry Production. Choices 2015, 30:1.
  • [14]ANTIBIOTIC RESISTANCE THREATS in the United States.. http://www.cdc.gov/drugresistance/threat-report-2013/pdf/ar-threats-2013-508.pdf webcite
  • [15]Gillings MR: Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol 2013, 4:4.
  • [16]Davies J, Davies D: Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010, 74:417-33.
  • [17]Palmer AC, Kishony R: Understanding, predicting and manipulating the genotypic evolution of antibiotic resistance. Nat Rev Genet 2013, 14:243-8.
  • [18]Baquero F, Tedim AP, Coque TM: Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013, 4:15.
  • [19]Partridge SR: Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev 2011, 35:820-55.
  • [20]Baquero F, Coque TM: Multilevel population genetics in antibiotic resistance. FEMS Microbiol Rev 2011, 35:705-6.
  • [21]Martinez JL, Baquero F, Andersson DI: Predicting antibiotic resistance. Nat Rev Microbiol 2007, 5:958-65.
  • [22]Martinez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Upsala Journal of Medical Sciences. Upsala J Med Sci. 2014, Early Online: 1–10, doi:10.3109/03009734.2014.901444).
  • [23]Baquero F, Nombela C: The microbiome as a human organ. Clin Microbiol Infect 2012, 18(Suppl 4):2-4.
  • [24]Kumsa B, Socolovschi C, Parola P, Rolain JM, Raoult D: Molecular detection of Acinetobacter species in lice and keds of domestic animals in Oromia Regional State. Ethiopia PLoS One 2012, 7:e52377.
  • [25]Ahmad A, Ghosh A, Schal C, Zurek L: Insects in confined swine operations carry a large antibiotic resistant and potentially virulent enterococcal community. BMC Microbiol 2011, 11:23. BioMed Central Full Text
  • [26]Graczyk TK, Knight R, Gilman RH, Cranfield MR: The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 2001, 3:231-5.
  • [27]Limoee M, Enayati AA, Khassi K, Salimi M, Ladonni H: Insecticide resistance and synergism of three field-collected strains of the German cockroach Blattella germanica (L.) (Dictyoptera: Blattellidae) from hospitals in Kermanshah, Iran. Trop Biomed 2011, 28:111-8.
  • [28]Salehzadeha A, Tavacolb P, Mahjubc H: Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan, Iran. J Vect Borne Dis 2007, 44:105-10.
  • [29]Akinjogunla OJ, Odeyemi AT, Udoinyang EP: Cockroaches (periplaneta americana and blattella germanica): reservoirs of multi drug resistant (MDR) bacteria in Uyo, Akwa Ibom State. Scientific J Biol Sci 2012, 1:19-30.
  • [30]Mideo N, Alizon S, Day T: Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. Trends Ecol Evol 2008, 23:511-7.
  • [31]Gillings MR, Stokes HW: Are humans increasing bacterial evolvability? Trends EcolEvol 2012, 27:346-52.
  • [32]Baquero F: Environmental stress and evolvability in microbial systems. Clin Microbiol Infect 2009, 15(Suppl 1):5-10.
  • [33]Paun G, Rozemberg G, Salomaa A. The Oxford Handbook of Membrane Computing. Oxford, London. Oxford University Press. 2010.
  • [34]Paun G. Membrane Computing. An Introduction. Berlin, Heidelberg. Springer-Verlag GmbH. 2002.
  • [35]Paun G: Computing with membranes. J Comput Syst Sci 2000, 61:108-43.
  • [36]Fontana F, Biancom L, Manca V: P systems and the modeling of biochemical oscillations. Lect Notes Comput Sci 2006, 3850:199-208.
  • [37]Cheruku S, Paun A, Romero-Campero FJ, Perez-Jimenez MJ, Ibarra OH: Simulating FAS-induced apoptosis by using P systems. Prog Nat Sci 2007, 4:424-31.
  • [38]Perez-Jimenez MJ, Romero-Campero FJ: P systems, a new computational modelling tool for systems biology. Transactions on computational systems. Lect N Bioinformat 2006, Biology VI:176-97.
  • [39]Romero-Campero FJ, Perez-Jimenez MJ: Modelling gene expression control using P systems: The Lac Operon, a case study. Biosystems 2008, 91:438-57.
  • [40]Romero-Campero FJ, Perez-Jimenez MJ: A model of the quorum sensing system in Vibrio fischeri using P systems. Artif Life 2008, 14:95-109.
  • [41]Besozzi D, Cazzaniga P, Pescini D, Mauri G: Modelling metapopulations with stochastic membrane systems. Biosystems 2008, 91:499-514.
  • [42]Cardona M, Colomer MA, Perez-Jimenez MJ, Sanuy D, Margalida A: Modelling ecosystems using P Systems: The Bearded Vulture, a case of study. Lect Notes Comput Sci 2009, 5391:137-56.
  • [43]Cardona M, Colomer MA, Margalida A, Perez-Hurtado I, Perez-Jimenez MJ, Sanuy D: A P system based model of an ecosystem of some scavenger birds. Lect Notes Comput Sci 2010, 5957:182-95.
  • [44]Frisco P, Gheorghe M, Perez-Jimenez M. Applications of Membrane Computing in Systems and Synthetic biology. Cham. Springer International Publishing. 2014.
  • [45]Membrane Computing Community.. http://ppage.psystems.eu webcite
  • [46]P-Lingua.. http://www.p-lingua.org/wiki/index.php/Main_Page webcite
  • [47]Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, et al.: The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 2011, 39:D70-4.
  • [48]Baquero F: From pieces to patterns: evolutionary engineering in bacterial pathogens. Nat Rev Microbiol 2004, 2:510-8.
  • [49]Java.. http://www.java.com webcite
  • [50]Garcia-Quismondo M, Gutierrez-Escudero R, Martinez-del-Amor MA, Orejuela-Pinedo E, Pérez-Hurtado I: P-Lingua 2.0: a software framework for cell-like P systems. Int J Comput Commun 2009, IV:234.
  • [51]R programming language.. http://www.r-project.org webcite
  • [52]Maciel A, Sankaranarayanan G, Halic T, Arikatla VS, Lu Z, De S: Surgical model-view-controller simulation software framework for local and collaborative applications. Int J Comput Assist Radiol Surg 2011, 6:457-71.
  • [53]Dethlefsen L, McFall-Ngai M, Relman DA: An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 2007, 449:811-8.
  • [54]Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI: Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 2008, 6:776-88.
  • [55]Pallen MJ, Wren BW: Bacterial pathogenomics. Nature 2007, 449:835-42.
  • [56]Carrasco P, Perez-Cobas AE, Van de Pol C, Baixeras J, Moya A, Latorre A: Succession of the gut microbiota in the cockroach Blattella germanica. Int Microbiol 2014, 17:99-109.
  文献评价指标  
  下载次数:0次 浏览次数:4次