期刊论文详细信息
Annals of Occupational and Environmental Medicine
Ecto- and endoparasite induce similar chemical and brain neurogenomic responses in the honey bee (Apis mellifera)
Cynthia M McDonnell2  Cédric Alaux2  Hugues Parrinello1  Jean-Pierre Desvignes1  Didier Crauser2  Emma Durbesson2  Dominique Beslay2  Yves Le Conte2 
[1] Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, Montpellier Cedex 05, 34094, France
[2] INRA, UR 406 Abeilles et Environnement, Site Agroparc, Domaine Saint-Paul, Avignon, Cedex 9, 84914, France
关键词: Cuticular hydrocarbons;    Transcriptome;    Social immunity;    Nosema ceranae;    Varroa destructor;   
Others  :  1085301
DOI  :  10.1186/1472-6785-13-25
 received in 2013-05-15, accepted in 2013-06-19,  发布年份 2013
PDF
【 摘 要 】

Background

Exclusion from a social group is an effective way to avoid parasite transmission. This type of social removal has also been proposed as a form of collective defense, or social immunity, in eusocial insect groups. If parasitic modification of host behavior is widespread in social insects, the underlying physiological and neuronal mechanisms remain to be investigated. We studied this phenomenon in honey bees parasitized by the mite Varroa destructor or microsporidia Nosema ceranae, which make bees leave the hive precociously. We characterized the chemical, behavioral and neurogenomic changes in parasitized bees, and compared the effects of both parasites.

Results

Analysis of cuticular hydrocarbon (CHC) profiles by gas chromatography coupled with mass spectrophotometry (GC-MS) showed changes in honey bees parasitized by either Nosema ceranae or Varroa destructor after 5 days of infestation. Levels of 10-HDA, an antiseptic important for social immunity, did not change in response to parasitism. Behavioral analysis of N. ceranae- or V. destructor- parasitized bees revealed no significant differences in their behavioral acts or social interactions with nestmates. Digital gene expression (DGE) analysis of parasitized honey bee brains demonstrated that, despite the difference in developmental stage at which the bee is parasitized, Nosema and Varroa-infested bees shared more gene changes with each other than with honey bee brain expression gene sets for forager or nurse castes.

Conclusions

Parasitism by Nosema or Varroa induces changes to both the CHC profiles on the surface of the bee and transcriptomic profiles in the brain, but within the social context of the hive, does not result in observable effects on her behavior or behavior towards her. While parasitized bees are reported to leave the hive as foragers, their brain transcription profiles suggest that their behavior is not driven by the same molecular pathways that induce foraging behavior.

【 授权许可】

   
2013 McDonnell et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113172237436.pdf 671KB PDF download
Figure 6. 57KB Image download
Figure 5. 116KB Image download
Figure 4. 39KB Image download
Figure 3. 32KB Image download
Figure 2. 40KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Moore J: Parasites and the Behavior of Animals. Oxford: Oxford University Press; 2002.
  • [2]Hart BL: Behavioral adaptations to pathogens and parasites–5 strategies. Neurosci Biobehav Rev 1990, 14:273-294.
  • [3]Hart BL: Behavioral adaptations to parasites—an ethological approach. J Parasitol 1992, 78:256-265.
  • [4]Curtis V, de Barra M, Aunger R: Disgust as an adaptive system for disease avoidance behavior. Phil Trans R Soc B 2011, 366:389-401.
  • [5]Behringer DC, Butler MJ IV, Shields JD: Avoidance of disease in social lobsters. Nature 2006, 441:421.
  • [6]Libersat F, Delago A, Gal R: Manipulation of host behavior by parasitic insects and insect parasites. Annu Rev Entomol 2009, 54:189-207.
  • [7]Klein SL: Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol Behavi 2003, 79:441-449.
  • [8]Wilson-Rich N, Spivak M, Fefferman NH, Starks PT: Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 2009, 54:405-423.
  • [9]Cremer S, Armitage SA, Schmid-Hempel P: Social immunity. Curr Biol 2007, 17:R693-702.
  • [10]Rueppell O, Hayworth MK, Ross NP: Altruistic self-removal of health-compromised honey bee workers from their hive. J Evol Biol 2010, 23:1538-1546.
  • [11]Downey DL, Higo TT, Winston ML: Single and dual parasitic mite infestations on the honey bee Apis mellifera L. Insect Soc 2000, 47:171-176.
  • [12]Janmaat AF, Winston ML: The influence of pollen storage area and Varroa jacobsoni Oudemans parasitism on temporal caste structure in honey bees (Apis mellifera L.). Insect Soc 2000, 47:177-182.
  • [13]Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S, Kretzchmar A, Le Conte Y: Flight behavior and pheromone changes associated to Nosema ceranae infection of honeybee workers (Apis mellifera) in field conditions. J Invert Pathol 2013, 113:42-51.
  • [14]Goblirsch M, Huang ZY, Spivak M: Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 2013, 8:e58165.
  • [15]Alaux C, Kemper N, Krezschmar A, Le Conte Y: Brain, physiological and behavioral modulation induced by immune stimulation in honeybees (Apis mellifera): A potential mediator of social immunity? Brain Behav Immun 2012, 26:1057-1060.
  • [16]Le Conte Y, Ellis M, Ritter W: Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 2010, 41:353-363.
  • [17]Rosenkranz R, Aumeier P, Ziegelmann B: Biology and control of Varroa destructor. J Invert Pathol 2010, 103:S96-S119.
  • [18]Yang X, Cox-Foster D: Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitol 2007, 134:405-412.
  • [19]Higes M, Martín-Hernández R, Meana A: Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 2010, 41:375-392.
  • [20]Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ: Nosema ceranae n. sp. (Micropora, Nosematidae) morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Europ J Protistol 1996, 32:356-365.
  • [21]Williams BAP: Unique physiology of host-parasite interactions in microsporidia infections. Cell Microbiol 2009, 11:1551-1560.
  • [22]Kralj J, Fuchs S: Nosema sp. influences flight behavior of infected honey bee (Apis mellifera) foragers. Apidologie 2010, 41:21-28.
  • [23]Kralj J, Fuchs S: Parasitic Varroa destructor mites influence flight duration and homing abiligy of infested Apis mellifera foragers. Apidologie 2006, 37:577-587.
  • [24]Amdam GV, Hartfelder K, Norberg K, Hagen A, Omholt SW: Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J Econ Entomol 2004, 97:741-747.
  • [25]Bowen-Walker PL, Gunn A: The effect of the ectoparasitic mite, Varroa destructor on adult worker honeybee (Apis mellifera) emergence weights, water, protein, carbohydrate, and lipid levels. Entomol Exp Appl 2001, 101:207-217.
  • [26]Kucharski R, Mitri C, Grau Y, Maleszka R: Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. Invertebr Neurosci 2007, 7:99-108.
  • [27]Antunez K, Martin-Hernandez R, Prieto L, Meana A, Zunino P, Higes M: Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 2009, 11:2284-2290.
  • [28]Dussaubat C, Maisonnasse A, Alaux C, Tchamitchan S, Brunet JL, Plettner E, Belzunces LP, Le Conte Y: Nosema spp. infection alters pheromone production in honey bee (Apis mellifera). J Chem Ecol 2010, 36:522-525.
  • [29]Whitfield CW, Cziko AM, Robinson GE: Gene expression profiles in the brain predict behavior in individual honey bees. Science 2003, 302:296-299.
  • [30]Mußig L, Richlitzki A, Rößler R, Eisenhardt D, Menzel R, Leboulle G: Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 2010, 30:7817-7825.
  • [31]Mayack C, Naug D: Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invert Pathol 2009, 100:185-188.
  • [32]Ament SA, Blatti CA, Alaux C, Wheeler MM, Toth AL, Le Conte Y, Hunt GJ, Guzman-Novoa E, DeGrandi-Hoffman G, Uribe-Rubio JL, Amdam GV, Page RE Jr, Rodriguez-Zas SL, Robinson GE, Sinha S: New meta-analysis tools reveal common transcriptional regulatory basis for multiple determinants of behavior. P Natl Acad Sci USA 2012, 109:E1801-E1810.
  • [33]Zayed A, Robinson GE: Understanding the relationship between gene expression and social behavior: lessons from the honey bee. Annu Rev Genet 2012, 46:589-613.
  • [34]Richard F-J, Aubert A, Grozinger CM: Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 2008, 6:50-62. BioMed Central Full Text
  • [35]Richard F-J, Holt HL, Grozinger CM: Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genom 2012, 13:558. BioMed Central Full Text
  • [36]Baracchi D, Fadda A, Turillazzi S: Evidence for antiseptic behavior towards sick adult bees in honey bee colonies. J Insect Physiolin press
  • [37]Blum MS, Novak AF, Taber S III: 10-hydroxy-Δ2-decenoic acid, an antibiotic found in royal jelly. Science 1959, 130:452-453.
  • [38]Krishnaswamy S, Duan SX, von Moltke LL, Greenblatt DJ, Court MH: Validation of serotonin (5-hydroxtryptamine) as an in vitro substrate probe for human UDP-glucuronosyltransferase (UGT) 1A6. Drug Metab Dispos 2003, 31:133-139.
  • [39]Krishnaswamy S, Hao Q, von Moltke LL, Greenblatt DJ, Court MH: Evaluation of 5-hydroxytryptophol and other endogenous serotonin (5-hydroxytryptamine) analogs as substrates for UDP-glucuronosyltransferase 1A6. Drug Metab Dispos 2004, 32:862-869.
  • [40]Itäaho K, Court M, Uutela P, Kostiainen R, Radominska-Pandya A, Finel M: Dopamine is a low-affinity and high-specificity substrate for the human UDP-glucuronosyltransferase 1A10. Drug Metab Dispos 2009, 37:768-775.
  • [41]Alaux C, Le Conte Y, Adams HA, Rodriguez-Zas S, Grozinger CM, Sinha S, Robinson GE: Regulation of brain gene expression in honey bees by brood pheromone. Genes Brain Behav 2009, 8:309-319.
  • [42]Salvy M, Martin C, Bagneres AG, Provost E, Roux M, Le Conte Y, Clement JL: Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells. Parasitol 2001, 122:145-159.
  • [43]Kather R, Drijfhout FP, Martin SJ: Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 2011, 37:205-212.
  • [44]Scholl J, Naug D: Olfactory discrimination of age-specific hydrocarbons generates behavioral segregation in a honeybee colony. Behav Ecol Sociobiol 2011, 65:1967-1973.
  • [45]Howard RW, Blomquist GJ: Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 2005, 50:371-393.
  • [46]Blomquist GJ, Bagneres AG: Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge: Cambridge University Press; 2010.
  • [47]Plettner E, Sutherland GRJ, Slessor KN, Winston ML: Why not be a queen? Regioselectivity in mandibular secretions of honeybee castes. J Chem Ecol 1995, 21:1017-1029.
  • [48]Phillips IR, Shephard EA: Flavin-containing monooxygenases: mutations, disease and drug response. Trends Pharmacol Sci 2008, 29:294-301.
  • [49]Wakabayashi-Ito N, Doherty OM, Moriyama H, Breakefield XO, Gusella JF, O'Donnell JM, Ito N: dtorsin, the Drosophila ortholog of the early-onset dystonia TOR1A (DYT1), plays a novel role in dopamine metabolism. PLoS One 2011, 6:e26183.
  • [50]Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumuller KG, Knoblich JA: Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 2011, 8:580-593.
  • [51]Brockmann A, Annangudi SP, Richmond TA, Ament SA, Xie F, Southey BR, Rodriguez-Zas SR, Robinson GE, Sweedler JV: Quantitative petidomics reveal brain peptide signatures of behavior. Proc Natl Acad Sci USA 2009, 106:2383-2388.
  • [52]Rafaeli A: Pheromone biosynthesis activating neuropeptide (PBAN): Regulatory role and mode of action. Gen Comp Endocrinol 2009, 162:69-78.
  • [53]Fan Y, Rafaeli A, Gileadi C, Kubli E, Applebaum SW: Drosophila melanogaster sex peptide stimulates juvenile hormone synthesis and depresses sex pheromone production in Helicoverpa armigera. J Insect Physiol 1999, 45:127-133.
  • [54]Zioni N, Soroker V, Chejanovsky N: Replication of Varroa destructor virus 1 (VDV-1) and a Varroa destructor virus 1-deformed wing virus recombinant (VDV-1-DWV) in the head of the honey bee. Virol 2011, 417:106-112.
  • [55]Shah KS, Evans EC, Pizzorno MC: Localization of deformed wing virus (DWV) in the brains of the honeybee, Apis mellifera Linnaeus. Virol J 2009, 6:182-188. BioMed Central Full Text
  • [56]Genersch E, Aubert M: Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res 2010, 41:54-73.
  • [57]Costa C, Tanner G, Lodesani M, Maistrello L, Neumann P: Negative correlation between Nosema ceranae spore loads and deformed wing virus infection levels in adult honey bee workers. J Invert Pathol 2011, 108:224-225.
  • [58]Dussaubat C, Brunet JL, Higes M, Colbourned JK, Lopez J, Choi JH, Martin-Hernandez R, Botias C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RFA, Le Conte Y, Alaux C: Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. PLoS One 2012, 7:e37017.
  • [59]Kralj J, Brockmann A, Fuchs S, Tautz J: The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L. J Comp Physiol A 2007, 193:363-370.
  • [60]Si A, Helliwell P, Maleszka R: Effects of NMDA receptor antagonists on olfactory learning and memory in the honeybee (Apis mellifera). Pharmacol Biochem Behav 2004, 77:191-197.
  • [61]Fahrbach SE: Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 2006, 51:209-232.
  • [62]Farris SM, Robinson GE, Fahrbach SE: Experience and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 2001, 21:6395-6404.
  • [63]Hammer M, Menzel R: Learning and memory in the honeybee. J Neurosci 1995, 15:1617-1630.
  • [64]Kurshan PT, Hamilton IS, Mustard JA, Mercer AR: Developmental changes in expression patterns of two dopamine receptor genes in mushroom bodies of the honeybee, Apis mellifera. J Comp Neurol 2003, 466:91-103.
  • [65]Kim YC, Lee HG, Han KA: D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J Neurosci 2007, 27:7640-7647.
  • [66]Menzel R, Müller U: Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 1996, 19:379-404.
  • [67]Shakiryanova D, Zettel GM, Gu T, Hewes RS, Levitan ES: Synaptic neuropeptide release induced by octopamine without Ca2+ entry into the nerve terminal. Proc Natl Acad Sci USA 2011, 108:4477-4481.
  • [68]Fussnecker BL, Grozinger CM: Dissecting the role of Kr-h1 brain gene expression in foraging behavior in honey bees (Apis mellifera). Insect Mol Biol 2008, 17:515-522.
  • [69]Lutz CC, Rodriguez-Zas SL, Fahrbach SE, Robinson GE: Transcriptional response to foraging experience in the honey bee mushroom bodies. Dev Neurobiol 2012, 72:153-166.
  • [70]Biron DG, Marché L, Ponton F, Loxdale HD, Galéotti N, Renault L, Joly C, Thomas F: Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proc R Soc B 2005, 272:2117-2126.
  • [71]Lefevre T, Thomas F, Rave S, Patre D, Renault L, Le Bourligu L, Cuny G, Biron DG: Trypanosoma brucei brucei induces alteration in the head proteome of the tsetse fly vector Glossina palpalis gambiensis. Insect Mol Biol 2007, 16:651-660.
  • [72]Van Engelsdorp D, Meixner MD: A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invert Pathol 2010, 103:S80-S95.
  • [73]Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y: Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 2010, 12:774-782.
  • [74]Alaux C, Dantec C, Parrinello H, Le Conte Y: Nutrigenomics in honey bee: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 2011, 12:496. BioMed Central Full Text
  • [75]Breed MD, Perry S, Biostad LB: Testing the blank slate hypothesis: why honey bee colonies accept young bees. Insect Soc 2004, 51:12-16.
  • [76]Page RE, Metcalf RA, Metcalf RL, Erickson EH, Lampman RL: Extractable hydrocarbons and kin recognition in honeybee. J Chem Ecol 1991, 17:745-756.
  • [77]Reyment RA: Compositional data analysis. Terra Rev 1989, 1:29-34.
  • [78]Schneider SS, Lewis LA: The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 2004, 35:117-131.
  • [79]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106. BioMed Central Full Text
  • [80]Priooznia M, Nagarajan V, Deng Y: GeneVenn – a web application for comparing gene lists using Venn diagrams. Bioinformation 2007, 1:420-422.
  • [81]Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, Eizinger A, Wylie BN, Davidson GS: A gene expression may for Caenorhabditis elegans. Science 2001, 293:2087-2092.
  • [82]Huang DW, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 2009, 4:44-57.
  • [83]Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009, 37:1-13.
  文献评价指标  
  下载次数:21次 浏览次数:9次