期刊论文详细信息
Biotechnology for Biofuels
Engineering a Streptomyces coelicolor biosynthesis pathway into Escherichia coli for high yield triglyceride production
Santiago Comba1  Martín Sabatini1  Simón Menendez-Bravo1  Ana Arabolaza1  Hugo Gramajo1 
[1] Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda (2000), Rosario, Argentina
关键词: Triacylglycerol;    Oil production;    Escherichia coli;    Phosphatidate phosphatase;    TAG biosynthesis;   
Others  :  1088658
DOI  :  10.1186/s13068-014-0172-0
 received in 2014-09-05, accepted in 2014-11-18,  发布年份 2014
PDF
【 摘 要 】

Background

Microbial lipid production represents a potential alternative feedstock for the biofuel and oleochemical industries. Since Escherichia coli exhibits many genetic, technical, and biotechnological advantages over native oleaginous bacteria, we aimed to construct a metabolically engineered E. coli strain capable of accumulating high levels of triacylglycerol (TAG) and evaluate its neutral lipid productivity during high cell density fed-batch fermentations.

Results

The Streptomyces coelicolor TAG biosynthesis pathway, defined by the acyl-CoA:diacylglycerol acyltransferase (DGAT) Sco0958 and the phosphatidic acid phosphatase (PAP) Lppβ, was successfully reconstructed in an E. coli diacylglycerol kinase (dgkA) mutant strain. TAG production in this genetic background was optimized by increasing the levels of the TAG precursors, diacylglycerol and long-chain acyl-CoAs. For this we carried out a series of stepwise optimizations of the chassis by 1) fine-tuning the expression of the heterologous SCO0958 and lppβ genes, 2) overexpression of the S. coelicolor acetyl-CoA carboxylase complex, and 3) mutation of fadE, the gene encoding for the acyl-CoA dehydrogenase that catalyzes the first step of the β-oxidation cycle in E. coli. The best producing strain, MPS13/pET28-0958-ACC/pBAD-LPPβ rendered a cellular content of 4.85% cell dry weight (CDW) TAG in batch cultivation. Process optimization of fed-batch fermentation in a 1-L stirred-tank bioreactor resulted in cultures with an OD600nm of 80 and a product titer of 722.1 mg TAG L-1 at the end of the process.

Conclusions

This study represents the highest reported fed-batch productivity of TAG reached by a model non-oleaginous bacterium. The organism used as a platform was an E. coli BL21 derivative strain containing a deletion in the dgkA gene and containing the TAG biosynthesis genes from S. coelicolor. The genetic studies carried out with this strain indicate that diacylglycerol (DAG) availability appears to be one of the main limiting factors to achieve higher yields of the storage compound. Therefore, in order to develop a competitive process for neutral lipid production in E. coli, it is still necessary to better understand the native regulation of the carbon flow metabolism of this organism, and in particular, to improve the levels of DAG biosynthesis.

【 授权许可】

   
2014 Comba et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150121000115403.pdf 1176KB PDF download
Figure 6. 28KB Image download
Figure 5. 25KB Image download
Figure 4. 21KB Image download
Figure 3. 33KB Image download
Figure 2. 19KB Image download
Figure 1. 42KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Alvarez HM, Steinbuchel A: Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 2002, 60:367-376.
  • [2]Comba S, Arabolaza A, Gramajo H: Emerging engineering principles for yield improvement in microbial cell design. Comput Struct Biotechnol J 2012, 3:e201210016.
  • [3]Kalscheuer R, Stoveken T, Luftmann H, Malkus U, Reichelt R, Steinbuchel A: Neutral lipid biosynthesis in engineered Escherichia coli: jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 2006, 72:1373-1379.
  • [4]Choi YJ, Lee SY: Microbial production of short-chain alkanes. Nature 2013, 502:571-574.
  • [5]Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD: Microbial engineering for the production of advanced biofuels. Nature 2012, 488:320-328.
  • [6]Liang MH, Jiang JG: Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 2013, 52:395-408.
  • [7]Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ: High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 2010, 147:212-218.
  • [8]Rucker J, Paul J, Pfeifer BA, Lee K: Engineering E. coli for triglyceride accumulation through native and heterologous metabolic reactions. Appl Microbiol Biotechnol 2013, 97:2753-2759.
  • [9]Janssen HJ, Steinbuchel A: Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 2014, 7:7. BioMed Central Full Text
  • [10]Lin F, Chen Y, Levine R, Lee K, Yuan Y, Lin XN: Improving fatty acid availability for bio-hydrocarbon production in Escherichia coli by metabolic engineering. PLoS One 2013, 8:e78595.
  • [11]Janssen HJ, Steinbuchel A: Production of triacylglycerols in Escherichia coli by deletion of the diacylglycerol kinase gene and heterologous overexpression of atfA from Acinetobacter baylyi ADP1. Appl Microbiol Biotechnol 2014, 98:1913-1924.
  • [12]Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H: Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 2013, 12:9. BioMed Central Full Text
  • [13]Raetz CR, Newman KF: Neutral lipid accumulation in the membranes of Escherichia coli mutants lacking diglyceride kinase. J Biol Chem 1978, 253:3882-3887.
  • [14]Raetz CR, Newman KF: Diglyceride kinase mutants of Escherichia coli: inner membrane association of 1,2-diglyceride and its relation to synthesis of membrane-derived oligosaccharides. J Bacteriol 1979, 137:860-868.
  • [15]Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H: Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 2008, 74:2573-2582.
  • [16]Rotering H, Raetz CR: Appearance of monoglyceride and triglyceride in the cell envelope of Escherichia coli mutants defective in diglyceride kinase. J Biol Chem 1983, 258:8068-8073.
  • [17]Dillon DA, Wu WI, Riedel B, Wissing JB, Dowhan W, Carman GM: The Escherichia coli pgpB gene encodes for a diacylglycerol pyrophosphate phosphatase activity. J Biol Chem 1996, 271:30548-30553.
  • [18]Touze T, Blanot D, Mengin-Lecreulx D: Substrate specificity and membrane topology of Escherichia coli PgpB, an undecaprenyl pyrophosphate phosphatase. J Biol Chem 2008, 283:16573-16583.
  • [19]Lu YH, Guan Z, Zhao J, Raetz CR: Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem 2011, 286:5506-5518.
  • [20]Kalscheuer R, Steinbuchel A: A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. J Biol Chem 2003, 278:8075-8082.
  • [21]Kalscheuer R, Stolting T, Steinbuchel A: Microdiesel: Escherichia coli engineered for fuel production. Microbiology 2006, 152:2529-2536.
  • [22]Black PN, DiRusso CC, Metzger AK, Heimert TL: Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem 1992, 267:25513-25520.
  • [23]Campbell JW, Cronan JE Jr: The enigmatic Escherichia coli fadE gene is yafH. J Bacteriol 2002, 184:3759-3764.
  • [24]Bao X, Ohlrogge J: Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiol 1999, 120:1057-1062.
  • [25]Cronan JE Jr, Subrahmanyam S: FadR, transcriptional co-ordination of metabolic expediency. Mol Microbiol 1998, 29:937-943.
  • [26]Campbell JW, Cronan JE Jr: Escherichia coli FadR positively regulates transcription of the fabB fatty acid biosynthetic gene. J Bacteriol 2001, 183:5982-5990.
  • [27]Zhang F, Ouellet M, Batth TS, Adams PD, Petzold CJ, Mukhopadhyay A, Keasling JD: Enhancing fatty acid production by the expression of the regulatory transcription factor FadR. Metab Eng 2012, 14:653-660.
  • [28]Rodriguez E, Banchio C, Diacovich L, Bibb MJ, Gramajo H: Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2). Appl Environ Microbiol 2001, 67:4166-4176.
  • [29]Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H: Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev 2011, 35:475-497.
  • [30]Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
  • [31]Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB: Microbial biosynthesis of alkanes. Science 2010, 329:559-562.
  • [32]Lennen RM, Braden DJ, West RA, Dumesic JA, Pfleger BF: A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 2010, 106:193-202.
  • [33]Liu T, Vora H, Khosla C: Quantitative analysis and engineering of fatty acid biosynthesis in E. coli. Metab Eng 2010, 12:378-386.
  • [34]Hofvander P, Doan TTP, Hamberg M: A prokaryotic acyl-CoA reductase performing reduction of fatty acyl-CoA to fatty alcohol. FEBS Lett 2011, 585:3538-3543.
  • [35]Zheng YN, Li LL, Liu Q, Yang JM, Wang XW, Liu W, Xu X, Liu H, Zhao G, Xian M: Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microb Cell Fact 2012, 11:65. BioMed Central Full Text
  • [36]Akhtar MK, Turner NJ, Jones PR: Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities. Proc Natl Acad Sci 2013, 110:87-92.
  • [37]Torella JP, Ford TJ, Kim SN, Chen AM, Way JC, Silver PA: Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc Natl Acad Sci U S A 2013, 110:11290-11295.
  • [38]Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006.0008.
  • [39]Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 2000, 97:6640-6645.
  • [40]Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:557-580.
  • [41]Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177:4121-4130.
  • [42]Cherepanov PP, Wackernagel W: Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158:9-14.
  • [43]Menendez-Bravo S, Comba S, Sabatini M, Arabolaza A, Gramajo H: Expanding the chemical diversity of natural esters by engineering a polyketide-derived pathway into Escherichia coli. Metab Eng 2014, 24:97-106.
  • [44]Bligh EG, Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959, 37:911-917.
  • [45]Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227:680-685.
  • [46]Sambrock J, Fritsch FEF, Maniatis T: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; 1989.
  文献评价指标  
  下载次数:110次 浏览次数:21次