期刊论文详细信息
Annals of Occupational and Environmental Medicine
A test of agent-based models as a tool for predicting patterns of pathogen transmission in complex landscapes
Kelly E Lane-deGraaf5  Ryan C Kennedy3  SM Niaz Arifin1  Gregory R Madey1  Agustin Fuentes2  Hope Hollocher4 
[1] Department of Computer Science & Engineering, University of Notre Dame, Notre Dame, IN, USA
[2] Department of Anthropology, University of Notre Dame, Notre Dame, IN, USA
[3] Department of Bioengineering and Therapeutic Services, University of California, San Francisco, USA
[4] Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
[5] Current address: Odum School of Ecology, University of Georgia, Athens, GA, USA
关键词: GIS;    Landscape heterogeneity;    Pathogen transmission;    Dispersal;    Agent-based model;   
Others  :  1085161
DOI  :  10.1186/1472-6785-13-35
 received in 2013-02-20, accepted in 2013-09-09,  发布年份 2013
PDF
【 摘 要 】

Background

Landscape complexity can mitigate or facilitate host dispersal, influencing patterns of pathogen transmission. Spatial transmission of pathogens through landscapes, therefore, presents an important but not fully elucidated aspect of transmission dynamics. Using an agent-based model (LiNK) that incorporates GIS data, we examined the effects of landscape information on the spatial patterns of host movement and pathogen transmission in a system of long-tailed macaques and their gut parasites. We first examined the role of the landscape to identify any individual or additive effects on host movement. We then compared modeled dispersal distance to patterns of actual macaque gene flow to both confirm our model’s predictions and to understand the role of individual land uses on dispersal. Finally, we compared the rate and the spread of two gastrointestinal parasites, Entamoeba histolytica and E. dispar, to understand how landscape complexity influences spatial patterns of pathogen transmission.

Results

LiNK captured emergent properties of the landscape, finding that interaction effects between landscape layers could mitigate the rate of infection in a non-additive way. We also found that the inclusion of landscape information facilitated an accurate prediction of macaque dispersal patterns across a complex landscape, as confirmed by Mantel tests comparing genetic and simulated dispersed distances. Finally, we demonstrated that landscape heterogeneity proved a significant barrier for a highly virulent pathogen, limiting the dispersal ability of hosts and thus its own transmission into distant populations.

Conclusions

Landscape complexity plays a significant role in determining the path of host dispersal and patterns of pathogen transmission. Incorporating landscape heterogeneity and host behavior into disease management decisions can be important in targeting response efforts, identifying cryptic transmission opportunities, and reducing or understanding potential for unintended ecological and evolutionary consequences. The inclusion of these data into models of pathogen transmission patterns improves our understanding of these dynamics, ultimately proving beneficial for sound public health policy.

【 授权许可】

   
2013 Lane-deGraaf et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113171143798.pdf 646KB PDF download
Figure 6. 37KB Image download
Figure 5. 22KB Image download
Figure 4. 21KB Image download
Figure 3. 22KB Image download
Figure 2. 34KB Image download
Figure 1. 102KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Hess GR, Randolph SE, Arneberg P, Chemini C, Furlanello C, Harwood J, Roberts MG, Swinton J: Spatial aspects of disease dynamics. In The Ecology of Wildlife Diseases. Edited by Hudson PJ, Rizzolo A, Grenfell BT, Heesterbeek H, Dobson AP. Oxford, UK: Oxford University Press; 2001:102-118.
  • [2]Lam SK, Chua KB: Nipah virus encephalitis outbreak in Malaysia. Clin Infect Dis 2002, 34(S2):S48-S51.
  • [3]Riley S: Large-scale spatial-transmission models of infectious disease. Science 2007, 316:1298-1301.
  • [4]Real LA, Biek R: Spatial dynamics and genetics of infectious disease on heterogeneous landscapes. J R Soc Interface 2007, 4:935-948.
  • [5]Crais RF, Ellis JH, Glass GE: Forecasting the geographical spread of smallpox cases by air travel. Epidemiol Infect 2003, 131:849-857.
  • [6]Crowl TA, Crist TO, Parmenter RR, Belovsky G, Lugo AE: The spread of invasive species and infectious disease as drivers of ecosystem change. Front Ecol Environ 2008, 6(5):238-246.
  • [7]Keeling MJ, Woolhouse MEJ, Shaw DJ, Matthews L, Chase-Topping M, Haydon DT, Cornell ST, Kappey J, Wilesmith J, Grenfell BT: Dynamics of the 2001 UK foot and mouth epidemic: stochastic dispersal in a heterogeneous landscape. Science 2001, 294:813-817.
  • [8]Atti ML C d, Merler S, Rizzo C, Ajelli M, Massari M, Manfredi P, Furlanello C, Scalia Tombo G, Ianelli M: Mitigation measures for pandemic influenza in Italy: An individual based model considering different scenarios. PLoS One 2008, 3(3):1-11.
  • [9]Remais J, Akullian A, Ding L, Seto E: Analytical methods for quantifying environmental connectivity for the control and surveillance of infectious disease spread. J R Soc Interface 2010, 7:1181-1193.
  • [10]Muller G, Grebaut P, Gouteux JP: An agent-based model of sleeping sickness: simulation trials of a forest focus in southern Cameroon. J R Biologies 2004, 327:1-11.
  • [11]Grenfell BT, Dobson AP: Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press; 1995.
  • [12]Morens DM, Folkers GK, Fauci AS: The challenge of emerging and re-emerging infectious diseases. Nature 2004, 430:242-249.
  • [13]Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL: Global trends in emerging infectious diseases. Nature 2008, 451:990-994.
  • [14]Eisenberg JNS, Brookhart MA, Rice G, Brown M, Colford JM Jr: Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ Health Persp 2002, 110(8):783-790.
  • [15]Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DH, Members of the Working Group on Land Use Change Disease Emergence: Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environ Health Persp 2004, 112(10):1092-1098.
  • [16]Koopman JS: Modeling Infection Transmission – the Pursuit of Complexities That Matter. Epidemiology 2002, 13(6):622-624.
  • [17]Koopman JS, Lynch JW: Individual causal models and population system models in epidemiology. Am J Public Health 1999, 89(8):1170-1174.
  • [18]Rogers DJ, Randolph SE: Studying the global distribution of infectious diseases using GIS and RS. Nat Rev Microbiol 2003, 1:231-237.
  • [19]Colwell RR: Global climate change and infectious disease: the cholera paradigm. Science 1996, 274:2025-2031.
  • [20]Eisen RJ, Enscore RE, Biggerstaff BJ, Reynolds PJ, Ettestad P, Brown T, Pape J, Tanda D, Levy CE, Engelthaler DM, Cheek J, Bueno R, Targhetta J, Montenieri JA, Gage KL: Human plague in the southwestern United States, 1957–2004: spatial models of elevated risk of human exposure to Yersinia pestis. J of Med Entomol 2007, 44(3):530-537.
  • [21]Mungrue K, Mahabir R: The rabies epidemic in Trinidada of 1923 to 1937: an evaluation with a geographic information system. Wild Environ Med 2009. doi:10.1016/j.wem.2010.11.001
  • [22]Castillo-Riquelme M, Chalabi Z, Lord J, Guhl F, Campbell-Lendrum D, Davies C, Fox-Rushby J: Modelling geographic variation in the cost-effectiveness of control policies for infectious diseases: The example of Chagas disease. J Health Econ 2008, 27:405-426.
  • [23]Eubank S, Guclu H, Anil Kumar VS, Marathe MV, Srinivasan A, Toroczkai Z, Wang N: Modelling disease outbreaks in realistic urban social networks. Nature 2004, 429:180-184.
  • [24]Meyers LA: Contact network epidemiology: bond percolation applied to infectious disease prediction and control. B Am Math Soc 2007, 44(1):63-86.
  • [25]Grimm V, Railsback SF: Individual-based modeling and ecology. Princeton, NJ: Princeton University Press; 2005.
  • [26]Segovia-Juarez JL, Gangul S, Krischner D: Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. J Theor Biol 2004, 231:357-376.
  • [27]Thierry B: The Macaques: a double-layered social organization. In Primates in Perspective. Edited by Campbell CJ, Fuentes A, MacKinnon KC, Panger M, Bearder SK. Oxford, UK: Oxford University Press; 2007:224-239.
  • [28]Evans BJ, Supriatna J, Andayani N, Melnick DJ: Diversification of Sulawesi macaque monkeys: Decoupled evolution of mitochondrial and autosomal DNA. Evolution 2003, 57:1931-1946.
  • [29]Lane KE, Lute M, Arta Putra IGA, Wandia IN, Hollocher H, Fuentes A: Pests, pestilence, and people: the long-tailed macaque and its role in the cultural complexities of Bali. In Indonesian Primates. Edited by Gursky S, Supriatna J. New York, NY: Springer; 2010:239-248.
  • [30]Wheatley BP: The sacred monkeys of Bali. Prospect Heights, IL: Wavelend Press, Inc; 1999.
  • [31]Fuentes A, Southern M, Suaryana KG: Monkey forests and human landscapes: is extensive sympatry sustainable for Homo sapiens and Macaca fascicularis in Bali? In Commensalism and Conflict: The primate-human interface. Edited by Patterson J. American Society of Primatology Publications; 2005.
  • [32]Southern MW: An assessment of potential habitat corridors and landscape ecology for long-tailed macaques (Macaca fascicularis) on Bali, Indonesia. WA: Central Washington University; 2002. [Master’s thesis]
  • [33]Jasmer DP, Goverse A, Smant G: Parasitic nematode interactions with mammals and plants. Annu Rev Phytopathol 2003, 41:245-270.
  • [34]Roberts LS, Janovy J: Foundations of Parasitology, 8th ed. New York, NY: McGraw-Hill; 2009.
  • [35]Lane KE, Holley C, Hollocher H, Fuentes A: The anthropogenic environment lessens the intensity and prevalence of gastrointestinal parasites in Balinese long-tailed macaques (Macaca fascicularis). Primates 2011, 52(2):117-128.
  • [36]Danson FM, Craig PS, Man W, Shi D, Giraudoux P: Landscape dynamics and risk modeling of human alveolar echinococcis. Photo Eng Rem Sens 2004, 70(3):359-366.
  • [37]Giraudoux P, Craig PS, Delattre P, Boa G, Bartholomot B, Harraga S, Quere J-P, Raoul F, Wang Y, Shi D, Vuitton D-A: Interactions between landscape changes and host communities can regulate Echinococcus multilocularis transmission. Parasit 2003, 127:S121-S131.
  • [38]Trejos-Macia G, Estrada A, Cabrera AGM: Survey of helminth parasites in populations of Alouatta palliate Mexicana and A. pigra in continuous and in fragmented habitat in southern Mexico. Int J Primat 2007, 28:931-945.
  • [39]Ryan SJ, Brashares JS, Walsh C, Milbers K, Kilroy C, Chapman CA: A survey of gastrointestinal parasite of olive baboobs (Papio Anubis) in human settlement areas of Mole National Park, Ghana. J Parasit 2012, 98(4):885-888.
  • [40]Rivera WL, Yason ADL, Adao DEV: Entamoeba histolytica and E. dispar infections in captive macaques (Macaca fascicularis) in the Philippines. Primates 2010, 51(1):69-74.
  • [41]Tachibana H, Yanagi T, Akatsuka A, Kobayash S, Janbara H, Tsutsumi V: Isolation and characterization of a potentially virulent species of Entamoeba nuttali from captive Japanese macaques. Parasit 2009, 136(10):1169-1177.
  • [42]Feng M, Yang B, Yang L, Fu YF, Zhuang YJ, Liang LG, Xu G, Cheng XJ, Tachibana H: High prevalence of Entamoeba infections in captive long-tailed macaques in China. Parasit Res 2011, 109(4):1093-1097.
  • [43]Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF: The ODD protocol: a review and first update. Ecol Model 2010, 221:2760-2768.
  • [44]Java[http://java.sun.com] webcite
  • [45]Repast[http://sourceforge.repast.net] webcite
  • [46]OpenMap[http://openmap.bbn.com] webcite
  • [47]GeoTools[http://geotools.codehaus.org] webcite
  • [48]JTS Topology Suite[http://www.vividsolutions.com/jts/jtshome.htm] webcite
  • [49]Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jorgensen C, Mooij WM, Muller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Ruger N, Strand E, Souissi S, Stillman RA, Vabo R, Visser U, DeAngelis DL: A standard protocol for describing individual-based and agent-based models. Ecol Model 2006, 198:115-126.
  • [50]Kennedy RC, Lane KE, Fuentes A, Hollocher H, Madey G: A GIS aware agent-based model of pathogen transmission. Int J Intell Contr Syst 2009, 14(1):51-61.
  • [51]Leduc A, Drapeau P, Bergeron Y, Legendre P: Study of spatial components of forest covers using partial Mantel tests and path analysis. J Veg Science 1992, 3(1):69-78.
  • [52]Zar JH: Biostatistical Analysis. Upper Saddle River, NJ: Prentice Hall; 1999.
  • [53]Wright S: Isolation by distance. Genetics 1943, 28:114-138.
  • [54]Rousset F: Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145:1219-1228.
  • [55]Slatkin M: Isolation by distance in equilibrium and non-equilibrium populations. Evolution 1993, 47(1):264-279.
  • [56]Stanley SL: Pathophysiology of ameobiasis. Trends Parasitol 2001, 17(6):280-285.
  • [57]De Garine-Waichatitsky M, Caron A, Kock R, Tschopp R, Munyeme M, Hofmeyr M, Michel A: A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidem and Infect 2012, 141(7):1342-1356.
  • [58]Amouroux E, Desvaux S, Drogoul A: Towards Virual Epidemiology: an agent-based approach to the modeling of H5NB1 propogation and persistence in North Vietnam. In Intelligent agents and multi-agent systems. Berlin, Germany: Springer Berlin; 2008.
  • [59]Laurenson MK, Mlengeya T, Shiferaw F, Cleaveland S: Approaches to disease control in domestic canids for the conservation of wild carnivores. Cambridge, UK: IUCN Publications; 2004.
  • [60]Boadella M, Vicente J, Ruiz-Fons F, de la Fuente J, Gortazar C: Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky’s disease virus. Prevent Vet Med 2011, 107(3–4):214-221.
  • [61]Beeton N, McCallum H: Models predict that culling is not a feasible strategy to prevent extinction of Tasmanian devils from facial tumour disease. J Appl Eco 48(6):1315-1323.
  • [62]Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, Wei G, Gettinby G, Gilks P, Jenkins H, Johnston WT, LeFevre AM, McInerney JP, Morrison WI: Positive and negative effects of widespread culling on tuberculosis on cattle. Nature 2006, 439(16):843-846.
  • [63]Woodroffe R, Donnelly CA, Cox DR, Bourne FJ, Cheeseman CL, Delahay RJ, Gettinby G, McInerney JP, Morrison WI: Effects of culling on badger Meles meles spatial organization: implications for the control of bovine tuberculosis. J Appl Ecol 2006, 43(1):1-10.
  • [64]Woodroffe R, Donnelly CA, Wei G, Cox DR, Bourne FJ, Burke T, Butlin RK, Cheeseman CL, Gettinby G, Gilks P, Heges S, Jenkins HE, Johnston WT, McInerney JP, Morrison WI, Pope LC: Social group size affects Mycobacterium bovis infection in European badgers (Meles meles). J Anim Ecol 2009, 78:818-827.
  • [65]Woodroffe R, Donnelly CA, Cox DR, Gilks P, Jenkins HE, Johnston WT, LeFevre AM, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, Gettinby G, Hewinson RG, McInerney JP, Mitchell AP, Morrison WI, Watkins GH: Bovine tuberculosis in cattle and badgers in localized culling areas. J Wildlife Dis 2009, 45(1):128-143.
  • [66]Levin R: Preparing for Uncertainty. Ecosyst Health 1995, 1:47-57.
  • [67]Bonnell TR, Sengupta RR, Chapman CA, Goldberg TL: An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission. Ecol Model 2010, 221(20):2491-2500.
  • [68]Arifin SMN, Kennedy RC, Lane KE, Fuentes A, Hollocher H, Madey G: P-SAM: A Post-Simulation Analysis Module for Agent-Based Models. Ottawa, ON: Paper presented at Proceedings of the Summer Computer Simulation Conference; 2010.
  文献评价指标  
  下载次数:61次 浏览次数:24次