期刊论文详细信息
BMC Bioinformatics
Comprehensive analysis of forty yeast microarray datasets reveals a novel subset of genes (APha-RiB) consistently negatively associated with ribosome biogenesis
Asoke K Nandi1  David J Roberts3  Rui Fa2  Basel Abu-Jamous2 
[1]Department of Mathematical Information Technology, University of Jyväskylä, Jyväskylä, Finland
[2]Department of Electronic and Computer Engineering, Brunel University, Uxbridge, Middlesex UB8 3PH, UK
[3]Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
关键词: (Binarisation of consensus partition matrices) Bi-CoPaM;    Budding yeast;    Genome-wide analysis;    Co-regulation;    Co-expression;    Stress response;    Ribosome biogenesis;   
Others  :  1085741
DOI  :  10.1186/1471-2105-15-322
 received in 2014-06-10, accepted in 2014-09-22,  发布年份 2014
PDF
【 摘 要 】

Background

The scale and complexity of genomic data lend themselves to analysis using sophisticated mathematical techniques to yield information that can generate new hypotheses and so guide further experimental investigations. An ensemble clustering method has the ability to perform consensus clustering over the same set of genes from different microarray datasets by combining results from different clustering methods into a single consensus result.

Results

In this paper we have performed comprehensive analysis of forty yeast microarray datasets. One recently described Bi-CoPaM method can analyse expressions of the same set of genes from various microarray datasets while using different clustering methods, and then combine these results into a single consensus result whose clusters’ tightness is tunable from tight, specific clusters to wide, overlapping clusters. This has been adopted in a novel way over genome-wide data from forty yeast microarray datasets to discover two clusters of genes that are consistently co-expressed over all of these datasets from different biological contexts and various experimental conditions. Most strikingly, average expression profiles of those clusters are consistently negatively correlated in all of the forty datasets while neither profile leads or lags the other.

Conclusions

The first cluster is enriched with ribosomal biogenesis genes. The biological processes of most of the genes in the second cluster are either unknown or apparently unrelated although they show high connectivity in protein-protein and genetic interaction networks. Therefore, it is possible that this mostly uncharacterised cluster and the ribosomal biogenesis cluster are transcriptionally oppositely regulated by some common machinery. Moreover, we anticipate that the genes included in this previously unknown cluster participate in generic, in contrast to specific, stress response processes. These novel findings illuminate coordinated gene expression in yeast and suggest several hypotheses for future experimental functional work. Additionally, we have demonstrated the usefulness of the Bi-CoPaM-based approach, which may be helpful for the analysis of other groups of (microarray) datasets from other species and systems for the exploration of global genetic co-expression.

【 授权许可】

   
2014 Abu-Jamous et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113180053161.pdf 2728KB PDF download
Figure 10. 80KB Image download
Figure 9. 77KB Image download
Figure 8. 49KB Image download
Figure 7. 72KB Image download
Figure 6. 162KB Image download
Figure 5. 85KB Image download
Figure 4. 115KB Image download
Figure 3. 247KB Image download
Figure 2. 80KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Roberts PC: Gene expression microarray data analysis demystified. Biotechnol Annu Rev 2008, 14:29-61.
  • [2]Boutros PC, Okey AB: Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief Bioinform 2005, 6:331-343.
  • [3]Kim J, Ogden RT, Kim H: A method to identify differential expression profiles of time-course gene data with Fourier transformation. BMC Bioinformatics 2013., 14
  • [4]Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B: Comprehensive identification of cell cycle–regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9:3273-3297.
  • [5]Liu D, Umbach DM, Peddada SD, Li L, Crockett PW, Weinberg CR: A random-periods model for expression of cell-cycle genes. PNAS 2004, 11:7240-7245.
  • [6]Tu BP, Kudlicki A, Rowicka M, McKnight SL: Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 2005, 310:1152-1158.
  • [7]Pramila T, Wu W, Miles S, Noble WS, Breeden LL: The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phasegap in the transcriptional circuitry of the cell cycle. Genes Dev 2006, 20:2266-2278.
  • [8]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci 1998, 14863-14868.
  • [9]Wade CH, Umbarger MA, McAlear MA: The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 2006, 23:293-306.
  • [10]Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM, Baughman JM, Paradkar PN, Kingsley PD, Culotta VC, Kaplan J, Palis J, Paw BH, Mootha VK: Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 2009, 10:119-130.
  • [11]Cooke EJ, Savage RS, Kirk PD, Darkins R, Wild DL: Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC Bioinformatics 2011, 12:399. BioMed Central Full Text
  • [12]Ayadi W, Elloumi M, Hao JK: Pattern-driven neighborhood search for biclustering of microarray data. BMC Bioinformatics 2012, 13(Suppl 7):S11.
  • [13]Xiao X, Dow ER, Eberhart R, Miled ZB, Oppelt RJ: Gene clustering using self-organizing maps and particle swarm optimization. IEEE Parallel and Distributed Processing Symposium Proceedings: Indianapolis 2003, 154-163.
  • [14]Dikicioglu D, Karabekmez E, Rash B, Pir P, Kirdar B, Oliver SG: How yeast re-programmes its transcriptional profile in response to different nutrient impulses. BMC Syst Biol 2011, 5:148-163. BioMed Central Full Text
  • [15]Salem SA, Jack LB, Nandi AK: Investigation of self-organizing oscillator networks for use in clustering microarray data. IEEE Trans Nanobioscience 2008, 7:65-79.
  • [16]Ayad HG, Kamel MS: On voting-based consensus of cluster ensembles. Pattern Recogn 2010, 43:1943-1953.
  • [17]Fred A, Jain AK: Data clustering using evidence accumulation. Proceedings of the Sixteenth International Conference on Pattern Recognition (ICPR) 2002, 276-280.
  • [18]Yu Z, Wong HS, Wang H: Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 2007, 23:2888-2896.
  • [19]Abu-Jamous B, Fa R, Roberts DJ, Nandi AK: Paradigm of tunable clustering using binarization of consensus partition matrices (Bi-CoPaM) for gene discovery. PLoS One 2013, 8(2):e56432.
  • [20]Abu-Jamous B, Fa R, Roberts DJ, Nandi AK: Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments. J R Soc Interface 2013, 10(81):20120990.
  • [21]Abu-Jamous B, Fa R, Roberts DJ, Nandi AK: Identification of genes consistently co-expressed in multiple microarrays by a genome-wide approach. The Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP); Vancouver, Canada 2013, 1172-1176.
  • [22]Brauer MJ, Huttenhower C, Airoldi EM, Rosenstein R, Matese JC, Gresham D, Boer VM, Troyanskaya OG, Botstein D: Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 2008, 19:352-367.
  • [23]Roy S, Wapinski I, Pfiffner J, French C, Socha A, Konieczka J, Habib N, Kellis M, Thompson D, Regev A: Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res 2013, 23:1039-1050.
  • [24]Conrad M, Schothorst J, Kankipati HN, Zeebroeck GV, Rubio-Texeira M, Thevelein JM: Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014, 38:254-299.
  • [25]Huber A, French SL, Tekotte H, Yerlikaya S, Stahl M, Perepelkina MP, Tyers M, Rougemont J, Beyer AL, Loewith R: Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO 2011, 30:3052-3064.
  • [26]Lam YK, Tsang PWM: eXploratory K-Means: a new simple and efficient algorithm for gene clustering. Appl Soft Comput 2012, 12:1149-1157.
  • [27]Zhu Z, Liu W, He S, Ji Z: Memetic clustering based on particle swarm optimizer and k-means. 2012 IEEE Congress on Evolutionary Computation (CEC); Brisbane, Australia 2012.
  • [28]Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES, Hartemink AJ, Haase SB: Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 2008, 453:944-947.
  • [29]Chumnanpuen P, Nookaew I, Nielsen J: Integrated analysis, transcriptome-lipidome, reveals the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. BMC Syst Biol 2013, 7:S7.
  • [30]Xue-Franzén Y, Henriksson J, Bürglin TR, Wright AP: Distinct roles of the Gcn5 histone acetyltransferase revealed during transient stress-induced reprogramming of the genome. BMC Genomics 2013, 14:479. BioMed Central Full Text
  • [31]Larsson M, Uvell H, Sandström J, Rydén P, Selth LA, Björklund S: Functional studies of the yeast med5, med15 and med16 mediator tail subunits. PLoS One 2013, 8:e73137.
  • [32]Liu Z, Österlund T, Hou J, Petranovic D, Nielsen J: Anaerobic α-amylase production and secretion with fumarate as the final electron acceptor in Saccharomyces cerevisiae. Appl Environ Microbiol 2013, 79:2962-2967.
  • [33]Suzuki T, Iwahashi Y: Comprehensive gene expression analysis of type B trichothecenes. J Agric Food Chem 2012, 60:9519-9527.
  • [34]Sanz AB, García R, Rodríguez-Peña JM, Díez-Muñiz S, Nombela C, Peterson CL, Arroyo J: Chromatin remodeling by the SWI/SNF complex is essential for transcription mediated by the yeast cell wall integrity MAPK pathway. Mol Biol Cell 2012, 23:2805-2817.
  • [35]Lanza AM, Blazeck JJ, Crook NC, Alper HS: Linking yeast Gcn5p catalytic function and gene regulation using a quantitative, graded dominant mutant approach. PLoS One 2012, 7:e36193.
  • [36]Chin SL, Marcus IM, Klevecz RR, Li CM: Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS J 2012, 279:1119-1130.
  • [37]Kovacs LAS, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, Reed SI, Mukherjee S, Haase SB: Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 2012, 45:669-679.
  • [38]González-Aguilera C, Tous C, Babiano R, Cruz JDL, Luna R, Aguilera A: Nab2 functions in the metabolism of RNA driven by polymerases II and III. Mol Biol Cell 2011, 22:2729-2740.
  • [39]Ferreira RT, Silva ARC, Pimentel C, Batista-Nascimento L, Rodrigues-Pousada C, Menezes RA: Arsenic stress elicits cytosolic Ca(2+) bursts and Crz1 activation in Saccharomyces cerevisiae. Microbiology 2012, 158:2293-2302.
  • [40]Bester MC, Jacobson D, Bauer FF: Many saccharomyces cerevisiae cell wall protein encoding genes are coregulated by Mss11, but cellular adhesion phenotypes appear only flo protein dependent. G3 (Bethesda) 2012, 2:131-141.
  • [41]Suzuki T, Iwahashi Y: Gene expression profiles of yeast Saccharomyces cerevisiae sod1 caused by patulin toxicity and evaluation of recovery potential of ascorbic acid. J Agric Food Chem 2011, 59:7145-7154.
  • [42]Parreiras LS, Kohn LM, Anderson JB: Cellular effects and epistasis among three determinants of adaptation in experimental populations of Saccharomyces cerevisiae. Eukaryot Cell 2011, 10:1348-1356.
  • [43]Morillo-Huesca M, Clemente-Ruiz M, Andújar E, Prado F: The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z. PLoS One 2010, 5:e12143.
  • [44]Matia-González AM, Rodríguez-Gabriel MA: Slt2 MAPK pathway is essential for cell integrity in the presence of arsenate. Yeast 2011, 28:9-17.
  • [45]Strassburg K, Walther D, Takahashi H, Kanaya S, Kopka J: Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. OMICS 2010, 14:249-259.
  • [46]Wade SL, Poorey K, Bekiranov S, Auble DT: The Snf1 kinase and proteasome-associated Rad23 regulate UV-responsive gene expression. EMBO J 2009, 28:2919-2931.
  • [47]Ge H, Wei M, Fabrizio P, Hu J, Cheng C, Longo VD, Li LM: Comparative analyses of time-course gene expression profiles of the long-lived sch9Delta mutant. Nucleic Acids Res 2010, 38:143-158.
  • [48]Pena JM, Lozano JA, Larranaga P: An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recogn Lett 1999, 20:1027-1040.
  • [49]Bolstad B, Irizarry R, Astrand M, Speed T: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193.
  • [50]Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology; Menlo Park, California 1994, 28-36.
  • [51]MEME: Multiple Em for Motif Elicitation (MEME) tool. [Online]. 2014. Available from: HYPERLINK http://meme.nbcr.net/meme/cgi-bin/meme.cgi webcite
  • [52]Gupta S, Stamatoyannopolous JA, Bailey T, Noble WS: Quantifying similarity between motifs. Genome Biol 2007, 8:R24. BioMed Central Full Text
  • [53]TOMTOM: TOMTOM Motif Similarity Tool. [Online]. 2014. Available from: HYPERLINK http://meme.nbcr.net/meme/cgi-bin/tomtom.cgi webcite
  • [54]Peng J, Chen J, Wang Y: Identifying cross-category relations in gene ontology and constructing genome-specific term association networks. BMC Bioinformatics 2013, 14(Suppl 2):S15. BioMed Central Full Text
  • [55]SGD: Saccharomyces Genome Database GO Term Finder. [Online]. 2014. [cited 2012 September. Available from: HYPERLINK http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl webcite
  • [56]SGD: Saccharomyces Genome Database GO Slim Mapper. [Online]. 2014. [cited 2012 November. Available from: HYPERLINK http://www.yeastgenome.org/cgi-bin/GO/goSlimMapper.pl webcite
  • [57]GeneMANIA: Gene Multiple Association Network Integration Algorithm. [Online]. 2014. Available from: HYPERLINK http://www.genemania.org/ webcite
  • [58]Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JLY, Toufighi K, Mostafavi S, Prinz J, Onge RPS, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z: The genetic landscape of a cell. Science 2010, 327:425-431.
  • [59]Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ: The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 2010, 8:e1000414.
  • [60]Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000, 11:4241-4257.
  • [61]Liko D, Slattery MG, Heideman W: Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae. J Biol Chem 2007, 282:26623-26628.
  • [62]Liko D, Conway MK, Grunwald DS, Heideman W: Stb3 plays a role in the glucose-induced transition from quiescence to growth in Saccharomyces cerevisiae. Genetics 2010, 185:797-810.
  • [63]Drobna E, Gazdag Z, Culakova H, Dzugasova V, Gbelska Y, Pesti M, Subik J: Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine. FEMS Yeast Res 2012, 12:958-968.
  • [64]Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO: Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 2001, 12:2987-3003.
  • [65]Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW: Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 2012, 14:966-976.
  • [66]Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F: The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO 1996, 15:2227-2235.
  • [67]Schmitt AP, McEntee K: Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. PNAS 1996, 93:5777-5782.
  • [68]Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166-176.
  • [69]SGD: Saccharomyces Genome Database. [Online]. 2014. [cited 2012 April 15. Available from: HYPERLINK http://www.yeastgenome.org/ webcite
  • [70]Stein T, Kricke J, Becher D, Lisowsky T: Azf1p is a nuclear-localized zinc-finger protein that is preferentially expressed under non-fermentative growth conditions in Saccharomyces cerevisiae. Curr Genet 1998, 34:287-296.
  • [71]Slattery MG, Liko D, Heideman W: The function and properties of the Azf1 transcriptional regulator change with growth conditions in Saccharomyces cerevisiae. Eukaryotic Cell 2006, 5:313-320.
  • [72]Zhu C, Byers KJRP, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, Masi FD, Pacek M, Rolfs A, Murthy T, LaBaer J, Bulyk ML: High-resolution DNA binding specificity analysis of yeast transcription factors. Genome Res 2009, 19:556-566.
  • [73]Niu W, Li Z, Zhan W, Iyer VR, Marcotte EM: Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 2008, 4:e1000120.
  • [74]Wade C, Shea KA, Jensen RV, McAlear MA: EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 2001, 21:8638-8650.
  文献评价指标  
  下载次数:77次 浏览次数:21次