期刊论文详细信息
Biotechnology for Biofuels
Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production
Tiina M Pakula1  Markku Saloheimo1  Merja Penttilä1  Marika Vitikainen1  Mikko Arvas1  Nina Aro1  Ann Westerholm-Parvinen1  Mari J Valkonen1  Mari Häkkinen1 
[1]VTT Technical Research Centre of Finland, PO Box 1000 Tietotie 2, Espoo FI-02044, VTT, Finland
关键词: Transcriptional profiling;    Transcription factors;    Hemicellulase;    Gene regulation;    Co-regulation;    Cellulase;    Carbohydrate active enzymes;   
Others  :  793842
DOI  :  10.1186/1754-6834-7-14
 received in 2013-07-05, accepted in 2014-01-14,  发布年份 2014
PDF
【 摘 要 】

Background

The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemicellulolytic activities. Production of cellulases and hemicellulases is modulated by environmental and physiological conditions. Several regulators affecting the expression of cellulase and hemicellulase genes have been identified but more factors still unknown are believed to be present in the genome of T. reesei.

Results

We have used transcriptional profiling data from T. reesei cultures in which cellulase/hemicellulase production was induced by the addition of different lignocellulose-derived materials to identify putative novel regulators for cellulase and hemicellulase genes. Based on this induction data, supplemented with other published genome-wide data on different protein production conditions, 28 candidate regulatory genes were selected for further studies and they were overexpressed in T. reesei. Overexpression of seven genes led to at least 1.5-fold increased production of cellulase and/or xylanase activity in the modified strains as compared to the parental strain. Deletion of gene 77513, here designated as ace3, was found to be detrimental for cellulase production and for the expression of several cellulase genes studied. This deletion also significantly reduced xylanase activity and expression of xylan-degrading enzyme genes. Furthermore, our data revealed the presence of co-regulated chromosomal regions containing carbohydrate-active enzyme genes and candidate regulatory genes.

Conclusions

Transcriptional profiling results from glycoside hydrolase induction experiments combined with a previous study of specific protein production conditions was shown to be an effective method for finding novel candidate regulatory genes affecting the production of cellulases and hemicellulases. Recombinant strains with improved cellulase and/or xylanase production properties were constructed, and a gene essential for cellulase gene expression was found. In addition, more evidence was gained on the chromatin level regional regulation of carbohydrate-active enzyme gene expression.

【 授权许可】

   
2014 Häkkinen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705055837674.pdf 3195KB PDF download
Figure 10. 47KB Image download
Figure 9. 72KB Image download
Figure 8. 48KB Image download
Figure 7. 122KB Image download
Figure 6. 28KB Image download
Figure 5. 80KB Image download
Figure 4. 158KB Image download
Figure 3. 103KB Image download
Figure 2. 155KB Image download
Figure 1. 79KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Schuster A, Schmoll M: Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 2010, 87(3):787-799.
  • [2]Penttilä M, Limón C, Nevalainen H: Molecular biology of Trichoderma and biotechnological applications. In Mycology, Handbook of Fungal Biotechnology. Volume 20. 2nd edition. Edited by Arora DK. New York: Marcel Dekker; 2004:413-427.
  • [3]Saloheimo M, Pakula TM: The cargo and the transport system: secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology 2012, 158(1):46-57.
  • [4]Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B: The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 2009, 37(suppl 1):D233-D238.
  • [5]Carbohydrate Active Enzymes database [http://www.cazy.org/ webcite]
  • [6]Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, Dunn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJM, Yao J, Ward M: Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278(34):31988-31997.
  • [7]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotech 2008, 26(5):553-560.
  • [8]Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula T: Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 2012, 11(1):134. BioMed Central Full Text
  • [9]Aro N, Pakula T, Penttilä M: Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 2005, 29(4):719-739.
  • [10]Kubicek C, Mikus M, Schuster A, Schmoll M, Seiboth B: Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2009, 2(1):19. BioMed Central Full Text
  • [11]Adav SS, Ravindran A, Chao LT, Tan L, Singh S, Sze SK: Proteomic analysis of pH and strains dependent protein secretion of Trichoderma reesei. J Proteome Res 2011, 10(10):4579-4596.
  • [12]Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A: Trichoderma in the light of day – physiology and development. Fungal Genet Biol 2010, 47(11):909-916.
  • [13]Pakula TM, Salonen K, Uusitalo J, Penttilä M: The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology 2005, 151(1):135-143.
  • [14]Arvas M, Pakula T, Smit B, Rautio J, Koivistoinen H, Jouhten P, Lindfors E, Wiebe M, Penttilä M, Saloheimo M: Correlation of gene expression and protein production rate - a system wide study. BMC Genomics 2011, 12:616. BioMed Central Full Text
  • [15]Abrahao Neto J, Rossini CHB, El-Gogary S, Henrique-Silva F, Crivellaro O, El-Dorry H: Mitochondrial functions mediate cellulase gene expression in Trichoderma reesei. Biochemistry 1995, 34(33):10456-10462.
  • [16]Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M: The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. J Biol Chem 2003, 278(45):45011-45020.
  • [17]Ilmén M, Thrane C, Penttilä M: The glucose repressor gene cre1 of Trichoderma: isolation and expression of a full-length and a truncated mutant form. Mol Gen Genet MGG 1996, 251(4):451-460.
  • [18]Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL: Xyr1 (Xylanase Regulator 1) regulates both the hydrolytic enzyme system and D-Xylose metabolism in Hypocrea jecorina. Eukaryot Cell 2006, 5(12):2128-2137.
  • [19]Aro N, Saloheimo A, Ilmén M, Penttilä M: ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 2001, 276(26):24309-24314.
  • [20]Zeilinger SZ, Ebner AE, Marosits TM, Mach RM, Kubicek CK: The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 2001, 266(1):56-63.
  • [21]Saloheimo A, Aro N, Ilmén M, Penttilä M: Isolation of the ace1 gene encoding a Cys2-His2 transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 2000, 275(8):5817-5825.
  • [22]Aro N, Ilmén M, Saloheimo A, Penttilä M: ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 2003, 69(1):56-65.
  • [23]Colabardini AC, Humanes AC, Gouvea PF, Savoldi M, Goldman MHS, Kress MRZ, Bayram Ö, Oliveira JVC, Gomes MD, Braus GH, Goldman GH: Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction. Fungal Genet Biol 2012, 49(2):130-140.
  • [24]Jonkers W, Rep M: Mutation of CRE1 in Fusarium oxysporum reverts the pathogenicity defects of the FRP1 deletion mutant. Mol Microbiol 2009, 74(5):1100-1113.
  • [25]Coradetti ST, Craig JP, Xiong Y, Shock T, Tian C, Glass NL: Conserved and essential transcription factors for cellulase gene expression in ascomycete fungi. Proc Natl Acad Sci 2012, 109(19):7397-7402.
  • [26]Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W: A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol 2012, 49(5):388-397.
  • [27]Seiboth B, Karimi RA, Phatale PA, Linke R, Hartl L, Sauer DG, Smith KM, Baker SE, Freitag M, Kubicek CP: The putative protein methyltransferase LAE1 controls cellulase gene expression in Trichoderma reesei. Mol Microbiol 2012, 84(6):1150-1164.
  • [28]Bioconductor, open source software for bioinformatics [http://www.bioconductor.org/ webcite]
  • [29]Kumar L, Futschik ME: Mfuzz: a software package for soft clustering of microarray data. Bioinformation 2007, 2(1):5-6,7.
  • [30]Hunter S, Jones P, Mitchell A, Apweiler R, Attwood TK, Bateman A, Bernard T, Binns D, Bork P, Burge S, de Castro E, Coggill P, Corbett M, Das U, Daugherty L, Duquenne L, Finn RD, Fraser M, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, et al.: InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 2012, 40(D1):D306-D312.
  • [31]Todd RB, Lockington RA, Kelly JM: The Aspergillus nidulans creC gene involved in carbon catabolite repression encodes a WD40 repeat protein. Mol Gen Genet 2000, 263(4):561-570.
  • [32]Smyth GK, Michaud J, Scott HS: Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 2005, 21(9):2067-2075.
  • [33]Nakazawa H, Okada K, Kobayashi R, Kubota T, Onodera T, Ochiai N, Omata N, Ogasawara W, Okada H, Morikawa Y: Characterization of the catalytic domains of Trichoderma reesei endoglucanase I, II, and III, expressed in Escherichia coli. Appl Microbiol Biotechnol 2008, 81(4):681-689.
  • [34]Kulmburg P, Mathieu M, Dowzer C, Kelly J, Felenbok B: Specific binding sites in the alcR and alcA promoters of the ethanol regulon for the CREA repressor mediating carbon cataboiite repression in Aspergillus nidulans. Mol Microbiol 1993, 7(6):847-857.
  • [35]Tamayo EN, Villanueva A, Hasper AA, de Graaff LH, Ramón D, Orejas M: CreA mediates repression of the regulatory gene xlnR which controls the production of xylanolytic enzymes in Aspergillus nidulans. Fungal Genet Biol 2008, 45(6):984-99327.
  • [36]Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL: Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 2008, 74:6554-6562.
  • [37]Brakhage AA: Regulation of fungal secondary metabolism. Nat Rev Micro 2013, 11(1):21-32.
  • [38]Karimi-Aghcheh R, Bok JW, Phatale PA, Smith KM, Baker SE, Lichius A, Omann M, Zeilinger S, Seiboth B, Rhee C, Keller NP, Freitag M, Kubicek CP: Functional analyses of Trichoderma reesei LAE1 reveal conserved and contrasting roles of this regulator. G3 (Bethesda) 2013, 3(2):369-378.
  • [39]Metz B, Seidl-Seiboth V, Haarmann T, Kopchinskiy A, Lorenz P, Seiboth B, Kubicek CP: Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 2011, 10(11):1527-1535.
  • [40]Arvas M, Kivioja T, Mitchell A, Saloheimo M, Ussery D, Penttilä M, Oliver S: Comparison of protein coding gene contents of the fungal phyla Pezizomycotina and Saccharomycotina. BMC Genomics 2007, 8:325. BioMed Central Full Text
  • [41]Porciuncula Jde O, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W: Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Biosci Biotechnol Biochem 2013, 77(5):1014-1022.
  • [42]Ivanova C, Bååth JA, Seiboth B, Kubicek CP: Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 2013, 8(5):e62631.
  • [43]Ensembl database[http://fungi.ensembl.org/index.html webcite]
  • [44]Stricker A, Mach R, de Graaff L: Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 2008, 78(2):211-220.
  • [45]Trichoderma reesei database v2.0 [http://genome.jgi-psf.org/Trire2/Trire2.home.html webcite]
  • [46]Trichoderma reesei database v1.0 [http://genome.jgi-psf.org/trire1/trire1.home.html webcite]
  • [47]Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CA: Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 1991, 17(1):19-33.
  • [48]Mullaney E, Hamer J, Roberti K, Yelton MM, Timberlake W: Primary structure of the trpC gene from Aspergillus nidulans. Mol Gen Genet 1985, 199(1):37-45.
  • [49]Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J: A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 1987, 61(2):155-164.
  • [50]Sambrook J, Fritsch E, Maniatis T: Molecular Cloning: A Laboratory Manual. 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989.
  • [51]Engler C, Kandzia R, Marillonnet S: A one pot, one step, precision cloning method with high throughput capability. PLoS One 2008, 3(11):e3647.
  • [52]Stewart PE, Thalken R, Bono JL, Rosa P: Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol Microbiol 2001, 39(3):714-721.
  • [53]Bailey MJ, Tähtiharju J: Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 2003, 62(2):156-162.
  • [54]Bailey MJ, Biely P, Poutanen K: Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 1992, 23(3):257-270.
  文献评价指标  
  下载次数:64次 浏览次数:10次