| BMC Bioinformatics | |
| Topological characterization of neuronal arbor morphology via sequence representation: I - motif analysis | |
| Todd A Gillette1  Giorgio A Ascoli1  | |
| [1] Department of Molecular Neuroscience, Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study (MS2A1), George Mason University, Fairfax, VA, USA | |
| 关键词: Motif analysis; Tree topology; Neuronal morphology; | |
| Others : 1230990 DOI : 10.1186/s12859-015-0604-2 |
|
| received in 2015-03-02, accepted in 2015-04-30, 发布年份 2015 | |
【 摘 要 】
Background
The morphology of neurons offers many insights into developmental processes and signal processing. Numerous reports have focused on metrics at the level of individual branches or whole arbors; however, no studies have attempted to quantify repeated morphological patterns within neuronal trees. We introduce a novel sequential encoding of neurite branching suitable to explore topological patterns.
Results
Using all possible branching topologies for comparison we show that the relative abundance of short patterns of up to three bifurcations, together with overall tree size, effectively capture the local branching patterns of neurons. Dendrites and axons display broadly similar topological motifs (over-represented patterns) and anti-motifs (under-represented patterns), differing most in their proportions of bifurcations with one terminal branch and in select sub-sequences of three bifurcations. In addition, pyramidal apical dendrites reveal a distinct motif profile.
Conclusions
The quantitative characterization of topological motifs in neuronal arbors provides a thorough description of local features and detailed boundaries for growth mechanisms and hypothesized computational functions.
【 授权许可】
2015 Gillette and Ascoli.
| Files | Size | Format | View |
|---|---|---|---|
| Figure 6. | 55KB | Image | |
| Figure 5. | 112KB | Image | |
| Figure 4. | 128KB | Image | |
| Figure 3. | 34KB | Image | |
| Figure 2. | 84KB | Image | |
| Figure 1. | 142KB | Image | |
| Figure 6. | 55KB | Image | |
| Figure 5. | 112KB | Image | |
| Figure 4. | 128KB | Image | |
| Figure 3. | 34KB | Image | |
| Figure 2. | 84KB | Image | |
| Figure 1. | 142KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Van Pelt J, Uylings H, Verwer R, Pentney R, Woldenberg M. Tree asymmetry—A sensitive and practical measure for binary topological trees. Bull Math Biol. 1992; 54:759-784.
- [2]Brown KM, Gillette TA, Ascoli GA. Quantifying neuronal size: summing up trees and splitting the branch difference. Semin Cell Dev Biol. 2008; 19:485-493.
- [3]Ascoli GA, Donohue DE, Halavi M. NeuroMorpho.Org: A Central Resource for Neuronal Morphologies. J Neurosci. 2007; 27:9247-9251.
- [4]Zador A, Agmon-Snir H, Segev I. The morphoelectrotonic transform: a graphical approach to dendritic function. J Neurosci. 1995; 15:1669-1682.
- [5]Rall W. Time constants and electrotonic length of membrane cylinders and neurons. Biophys J. 1969; 9:1483-1508.
- [6]Jeffress LA. A place theory of sound localization. J Comp Physiol Psychol. 1948; 41:35-39.
- [7]Van Ooyen A, Duijnhouwer J, Remme M, van Pelt J. The effect of dendritic topology on firing patterns in model neurons. Netw Comput Neural Syst. 2002; 13:311-325.
- [8]Wen Q, Chklovskii DB. A cost-benefit analysis of neuronal morphology. J Neurophysiol. 2008; 99:2320-2328.
- [9]Cuntz H, Borst I, Segev I. Optimization principles of dendritic structure. Theor Biol Med Model. 2007; 4:21. BioMed Central Full Text
- [10]Cuntz H, Mathy A, Häusser M. A scaling law derived from optimal dendritic wiring. Proc Natl Acad Sci U S A. 2012; 109:11014-11018.
- [11]Hillman D. Neuronal shape parameters and substructures as a basis of neuronal form. MIT Press, Cambridge; 1979.
- [12]Tamori Y. Theory of dendritic morphology. Phys Rev E. 1993; 48:3124.
- [13]Luczak A. Spatial embedding of neuronal trees modeled by diffusive growth. J Neurosci Methods. 2006; 157:132-141.
- [14]Hely TA, Graham B, van Ooyen A. A computational model of dendrite elongation and branching based on MAP2 phosphorylation. J Theor Biol. 2001; 210:375-384.
- [15]Chklovskii DB. Optimal sizes of dendritic and axonal arbors in a topographic projection. J Neurophysiol. 2000; 83:2113-2119.
- [16]Torben-Nielsen B, De Schutter E. Context-aware modeling of neuronal morphologies. Front Neuroanat. 2014; 8:92.
- [17]Burke R, Marks W, Ulfhake B. A parsimonious description of motoneuron dendritic morphology using computer simulation. J Neurosci. 1992; 12:2403-2416.
- [18]Samsonovich AV, Ascoli GA. Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model. Hippocampus. 2005; 15:166-183.
- [19]Donohue DE, Ascoli GA. Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. J Comput Neurosci. 2005; 19:223-238.
- [20]Donohue DE, Ascoli GA. A comparative computer simulation of dendritic morphology. PLoS Comput Biol. 2008; 4: Article ID e1000089
- [21]Van Pelt J, Verwer R. The exact probabilities of branching patterns under terminal and segmental growth hypotheses. Bull Math Biol. 1983; 45:269-285.
- [22]Van Pelt J, Verwer R. Topological properties of binary trees grown with order-dependent branching probabilities. Bull Math Biol. 1986; 48:197-211.
- [23]Teeter CM, Stevens CF. A general principle of neural arbor branch density. Curr Biol. 2011; 21:2105-2108.
- [24]Liu Y. The DIADEM and beyond. Neuroinformatics. 2011; 9:99-102.
- [25]Donohue DE, Ascoli GA. Automated reconstruction of neuronal morphology: an overview. Brain Res Rev. 2011; 67:94-102.
- [26]He HY, Cline HT. Diadem X: automated 4 dimensional analysis of morphological data. Neuroinformatics. 2011; 9:107-112.
- [27]Polavaram S, Gillette TA, Parekh R, Ascoli GA. Statistical analysis and data mining of digital reconstructions of dendritic morphologies. Front Neuroanat. 2014, 138
- [28]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215:403-410.
- [29]Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25:3389-3402.
- [30]Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S. Glocal alignment: finding rearrangements during alignment. Bioinformatics. 2003; 19 Suppl 1:i54-i62.
- [31]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673-4680.
- [32]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Scie. 2002; 298:824-827.
- [33]Berry M, Flinn R. Vertex analysis of Purkinje cell dendritic trees in the cerebellum of the Rat. Proc R Soc B Biol Sci. 1984; 221:321-348.
- [34]Harding EF. The probabilities of rooted tree-shapes generated by random bifurcation. Adv Appl Probab. 1971; 3:44-77.
- [35]Whitford KL, Dijkhuizen P, Polleux F, Ghosh A. Molecular control of cortical dendrite development. Annu Rev Neurosci. 2002; 25:127-149.
- [36]Halavi M, Hamilton KA, Parekh R, Ascoli GA. Digital reconstructions of neuronal morphology: three decades of research trends. Front Neurosci. 2012; 6:49.
- [37]Spruston N. Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci. 2008; 9:206-221.
- [38]Spratling MW. Cortical region interactions and the functional role of apical dendrites. Behav Cogn Neurosci Rev. 2002; 1:219-228.
- [39]Koester S, O’Leary D. Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci. 1992; 12:1382-1393.
- [40]Van Pelt J. Effect of pruning on dendritic tree topology. J Theor Biol. 1997; 186:17-32.
- [41]Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA, Olson EC, Howell BW. Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell. 2010; 143:826-836.
- [42]Vetter P, Roth A, Häusser M. Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol. 2001; 85:926-937.
- [43]Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C, Davis RJ, Tessier-Lavigne M. Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell. 2015; 160:161-176.
- [44]Kalil K, Dent EW. Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci. 2014; 15:7-18.
- [45]Szebenyi G, Callaway JL, Dent EW, Kalil K. Interstitial branches develop from active regions of the axon demarcated by the primary growth cone during pausing behaviors. J Neurosci. 1998; 18:7930-7940.
- [46]Bastmeyer M, O’Leary D. Dynamics of target recognition by interstitial axon branching along developing cortical axons. J Neurosci. 1996; 16:1450-1459.
- [47]Sagasti A, Guido MR, Raible DW, Schier AF. Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr Biol. 2005; 15:804-814.
- [48]Grueber WB, Sagasti A. Self-avoidance and tiling: Mechanisms of dendrite and axon spacing. Cold Spring Harb Perspect Biol. 2010; 2:a001750.
- [49]Luo L, O’Leary DDM. Axon retraction and degeneration in development and disease. Annu Rev Neurosci. 2005; 28:127-156.
- [50]De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron. 2006; 49:861-875.
- [51]Stettler DD, Yamahachi H, Li W, Denk W, Gilbert CD. Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron. 2006; 49:877-887.
- [52]Parekh R, Armañanzas R, Ascoli GA. The importance of metadata to assess information content in digital reconstructions of neuronal morphology. Cell Tissue Res. 2015; 360:121-127.
- [53]Gillette TA, Hosseini P, Ascoli GA. Topological characterization of neuronal arbor morphology via sequence representation. II. Global alignment. BMC Bioinformatics. 2015, In Press.
- [54]Basu S, Condron B, Acton ST. Path2Path: Hierarchical path-based analysis for neuron matching. In 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2011:996–999
- [55]D’haeseleer P. What are DNA sequence motifs? Nat Biotechnol. 2006; 24:423-425.
- [56]Branden CI, Tooze J. Introduction to Protein Structure. Garland Science;. https://scholar. google.com/scholar?cluster=16676927901899123440&hl=en&as_sdt=0,47 webcite
- [57]Wan Y, Long F, Qu L, Xiao H, Hawrylycz M, Myers EW, et al. BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies. Neuroinformatics. 2015, In Press.
- [58]Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia. 2011; 59:1237-1252.
- [59]Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology. Brain Res Rev. 2010; 63:2-10.
- [60]Wright SN, Kochunov P, Mut F, Bergamino M, Brown KM, Mazziotta JC, Toga AW, Cebral JR, Ascoli GA. Digital reconstruction and morphometric analysis of human brain arterial vasculature from magnetic resonance angiography. Neuroimage. 2013; 82:170-181.
- [61]Segura V, Ouangraoua A, Ferraro P, Costes E. Comparison of tree architecture using tree edit distances: application to 2-year-old apple hybrids. Euphytica. 2008; 161:155-164.
- [62]Turner DA, Li XG, Pyapali GK, Ylinen A, Buzsaki G. Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo. J Comp Neurol. 1995; 356:580-594.
- [63]Ropireddy D, Scorcioni R, Lasher B, Buzsáki G, Ascoli GA. Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different CA3 locations. Brain Struct Funct. 2011; 216:1-15.
- [64]Borst A, Haag J. The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties. J Comput Neurosci. 1996; 3:313-336.
- [65]Nikolenko V, Poskanzer KE, Yuste R. Two-photon photostimulation and imaging of neural circuits. Nat Methods. 2007; 4:943-950.
- [66]Gulyás AI, Megías M, Emri Z, Freund TF. Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus. J Neurosci. 1999; 19:10082-10097.
- [67]Ikegaya Y, Le Bon-Jego M, Yuste R. Large-scale imaging of cortical network activity with calcium indicators. Neurosci Res. 2005; 52:132-138.
- [68]Wang Y, Gupta A, Toledo-Rodriguez M, Wu CZ, Markram H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb Cortex. 2002; 12:395-410.
- [69]Chitwood RA, Hubbard A, Jaffe DB. Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol. 1999; 515(Pt 3):743-756.
- [70]Kawaguchi Y, Karube F, Kubota Y. Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. Cereb Cortex. 2006; 16:696-711.