期刊论文详细信息
Biotechnology for Biofuels
Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes
Zhongpeng Guo2  Sophie Duquesne2  Sophie Bozonnet2  Gianluca Cioci2  Jean-Marc Nicaud1  Alain Marty2  Michael Joseph O’Donohue2 
[1] AgroParisTech, UMR Micalis, Jouy-en-Josas, 78352, France
[2] CNRS, UMR5504, Toulouse, 31400, France
关键词: Cellulases;    Enzymatic hydrolysis;    Lipids;    Oleaginous yeast;    Lignocellulosic biomass;   
Others  :  1225778
DOI  :  10.1186/s13068-015-0289-9
 received in 2015-03-24, accepted in 2015-07-22,  发布年份 2015
PDF
【 摘 要 】

Background

Yarrowia lipolytica, one of the most widely studied “nonconventional” oleaginous yeast species, is unable to grow on cellobiose. Engineering cellobiose-degrading ability into this yeast is a vital step towards the development of cellulolytic biocatalysts suitable for consolidated bioprocessing.

Results

In the present work, we identified six genes encoding putative β-glucosidases in the Y. lipolytica genome. To study these, homologous expression was attempted in Y. lipolytica JMY1212 Zeta. Two strains overexpressing BGL1 (YALI0F16027g) and BGL2 (YALI0B14289g) produced β-glucosidase activity and were able to degrade cellobiose, while the other four did not display any detectable activity. The two active β-glucosidases, one of which was mainly cell-associated while the other was present in the extracellular medium, were purified and characterized. The two Bgls were most active at 40–45°C and pH 4.0–4.5, and exhibited hydrolytic activity on various β-glycoside substrates. Specifically, Bgl1 displayed 12.5-fold higher catalytic efficiency on cellobiose than Bgl2. Significantly, in experiments where cellobiose or cellulose (performed in the presence of a β-glucosidase-deficient commercial cellulase cocktail produced by Trichoderma reseei) was used as carbon source for aerobic cultivation, Y. lipolyticapox co-expressing BGL1 and BGL2 grew better than the Y. lipolytica strains expressing single BGLs. The specific growth rate and biomass yield of Y. lipolytica JMY1212 co-expressing BGL1 and BGL2 were 0.15 h −1and 0.50 g-DCW/g-cellobiose, respectively, similar to that of the control grown on glucose.

Conclusions

We conclude that the bi-functional Y. lipolytica developed in the current study represents a vital step towards the creation of a cellulolytic yeast strain that can be used for lipid production from lignocellulosic biomass. When used in combination with commercial cellulolytic cocktails, this strain will no doubt reduce enzyme requirements and thus costs.

【 授权许可】

   
2015 Guo et al.

【 预 览 】
附件列表
Files Size Format View
20150922002331452.pdf 2930KB PDF download
Fig.7. 50KB Image download
Fig.6. 58KB Image download
Fig.5. 63KB Image download
20140706053426644.pdf 2642KB PDF download
Fig.3. 39KB Image download
Fig.2. 23KB Image download
Fig.1. 102KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Pedersen M, Meyer AS: Lignocellulose pretreatment severity-relating pH to biomatrix opening. N Biotechnol 2010, 27(6):739-750.
  • [2]Wilson DB: Cellulases and biofuels. Curr Opin Biotechnol 2009, 20(3):295-299.
  • [3]Tomme P, Warren RA, Gilkes NR: Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 1995, 37:1-81.
  • [4]Sun Y, Cheng J: Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour Technol 2002, 83:1-11.
  • [5]Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.
  • [6]La Grange DC, Den Haan R, Van Zyl WH: Engineering cellulolytic ability into bioprocessing organisms. Appl Microbiol Biotechnol 2010, 87:1195-1208.
  • [7]Duff SJB, Cooper DG, Fuller OM: Cellulase and beta-glucosidase production by mixed culture of Trichoderma reesei Rut C30 and Aspergillus phoenicis. Biotechnol Lett 1985, 7:185-190.
  • [8]Holtzapple M, Cognata M, Shu Y, Hendrickson C: Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 1990, 36(3):275-287.
  • [9]Stockton DC, Mitchell DJ, Grohmann K: Optimum β-glucosidase supplementation of cellulose for efficient conversion of cellulose to glucose. Biotechnol Lett 1991, 13:57-62.
  • [10]Lee WH, Nan H, Kim HJ, Jin YS: Simultaneous saccharification and fermentation by engineered Saccharomyces cerevisiae without supplementing extracellular β-glucosidase. J Biotechnol 2013, 167(3):316-322.
  • [11]Lian J, Li Y, HamediRad M, Zhao H: Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae. Biotechnol Bioeng 2014, 111(8):1521-1531.
  • [12]Tang H, Hou J, Shen Y, Xu L, Yang H, Fang X, et al.: High β-glucosidase secretion in Saccharomyces cerevisiae improves the efficiency of cellulase hydrolysis and ethanol production in simultaneous saccharification and fermentation. J Microbiol Biotechnol 2013, 23(11):1577-1585.
  • [13]Zhang F, Carothers JM, Keasling JD: Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 2012, 30(4):354-359.
  • [14]Demirbaş A: Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Convers Manage 2003, 44:2093-2109.
  • [15]Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, et al.: Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 2010, 463:559-562.
  • [16]Shi S, Octavio Valle-Rodriguez J, Khoomrung S, Siewers V, Nielsen J: Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 2012, 5:7-16. BioMed Central Full Text
  • [17]Runguphan W, Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 2014, 21:103-113.
  • [18]Nielsen J: Systems biology of lipid metabolism: from yeast to human. FEBS Lett 2009, 583(24):3905-3913.
  • [19]Valle-Rodríguez JO, Shi S, Siewers V, Nielsen J: Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Appl Energ 2014, 115:226-232.
  • [20]Ratledge C: Single cell oils for the 21th century. In Single cell oils. Edited by Cohen R. AOCS Press, Champaign; 2005:1-20.
  • [21]Thevenieau F, Nicaud J-M: Microorganisms as sources of oils. OCL 2013, 20(6):1-8.
  • [22]Papanikolaou S, Aggelis G: Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur J Lipid Sci Technol 2010, 112:639-654.
  • [23]Easterling ER, French WT, Hernandez R, Licha M: The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 2009, 100(1):356-361.
  • [24]Blazeck J, Hill A, Liu L, Knight R, Miller J, Pan A, et al.: Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat Commun 2014, 5:3131.
  • [25]Groenewald M, Boekhout T, Neuvéglise C, Gaillardin C, van Dijck PW, Wyss M: Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 2014, 40(3):187-206.
  • [26]Michely S, Gaillardin C, Nicaud J-M, Neuvéglise C: Comparative physiology of oleaginous species from the Yarrowia clade. PLoS One 2013, 8(5):e63356.
  • [27]Lane S, Zhang S, Wei N, Rao C, Jin YS, Lee WH et al (2014) Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng (In press)
  • [28]Chauhan JS, Rao A, Raghava GPS: In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLoS One 2013, 8(6):e67008.
  • [29]Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, et al.: Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 2008, 74(24):7779-7789.
  • [30]Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 2013, 127:500-507.
  • [31]Rodrigues AC, Leitão AF, Moreira S, Felby C, Gama M: Recycling of cellulases in lignocellulosic hydrolysates using alkaline elution. Bioresour Technol 2012, 110:526-533.
  • [32]Jeon E, Hyeon JE, Suh DJ, Suh YW, Kim SW, Song KH, et al.: Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes. Mol Cell 2009, 28:369-373.
  • [33]Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, et al.: Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Bioresour Technol 2008, 99:5099-5103.
  • [34]Fickers P, Benetti P-H, Waché Y, Marty A, Mauersberger S, Smit M, et al.: Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 2005, 5:527-543.
  • [35]Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al.: Genome evolution in yeasts. Nature 2004, 430:35-44.
  • [36]Belancic A, Gunata Z, Vallier MJ, Agosin E: β-Glucosidase from the grape native yeast Debaryomyces vanrijiae. Purification, characterization, and its effect on monoterpene content of a muscat grape juice. J Agric Food Chem 2003, 51:1453-1459.
  • [37]Galas E, Romanowska I: Production purification and characterization of a highly glucose-tolerant novel ß-glucosidase from Candida peltata. Appl Environ Microbiol 1996, 62:3165-3170.
  • [38]Daroit DJ, Simonetti A, Hertz PF, Brandelli A: Purification and characterization of an extracellular beta-glucosidase from Monascus purpureus. J Microbiol Biotechnol 2008, 18:933-941.
  • [39]Leclerc M, Chemardin P, Arnaud A, Ratomahenina R, Galzy P, Gerbaud C, et al.: Comparison of the properties of the purified beta-glucosidase from the transformed strain of Saccharomyces cerevisiae TYKF2 with that of the donor strain Kluyveromyces fragilis Y610. Biotechnol Appl Biochem 1987, 9:410-422.
  • [40]González-Pombo P, Pérez G, Carrau F, Guisán JM, Batista-Viera F, Brena BM: One-step purification and characterization of an intracellular beta-glucosidase from Metschnikowia pulcherrima. Biotechnol Lett 2008, 30:1469-1475.
  • [41]Machida M, Ohtsuki I, Fukui S, Yamashita I: Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Appl Environ Microbiol 1988, 54(12):3147-3155.
  • [42]Collins T, Gerday C, Feller G: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 2005, 29:3-23.
  • [43]Nazir A, Soni R, Saini HS, Kaur A, Chadha BS: Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl Biochem Biotechnol 2010, 162:538-547.
  • [44]Yan TR, Lin CL: Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 1997, 61:965-970.
  • [45]Guo ZP, Zhang L, Ding ZY, Gu ZH, Shi GY: Development of an industrial ethanol-producing yeast strain for efficient utilization of cellobiose. Enzyme Microb Technol 2011, 49(1):105-112.
  • [46]Verduyn C, Postma E, Scheffers WA, van Dijken JP: Effect of benzoic acid on metabolic fluxes in yeasts: a continuous culture study on the regulation of respiration and alcoholic fermentation. Yeast 1992, 8:501-517.
  • [47]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [48]Fickers P, Le Dall MT, Gaillardin C, Thonart P, Nicaud J-M: New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica. J Microbiol Methods 2003, 55(3):727-737.
  • [49]Duquesne S, Bordes F, Fudalej F, Nicaud J-M, Marty A: The yeast Yarrowia lipolytica as a generic tool for molecular evolution of enzymes. Methods Mol Biol 2012, 861:301-312.
  • [50]Bordes F, Fudalej F, Dossat V, Nicaud J-M, Marty A: A new recombinant protein expression system for high-throughput screening in the yeast Yarrowia lipolytica. J Microbiol Methods 2007, 70(3):493-502.
  • [51]Duquesne S, Bozonnet S, Bordes F, Dumon C, Nicaud J-M, Marty A: Construction of a highly active xylanase displaying oleaginous yeast: comparison of anchoring systems. PLoS One 2014, 9(4):e95128.
  • [52]Cummings C, Fowler T: Secretion of Trichoderma reesei β-glucosidase by Saccharomyces cerevisiae. Curr Genet 1996, 29:227-233.
  • [53]Segel I: Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. John Wiley, New York; 1993.
  • [54]Lan TQ, Lou H, Zhu JY: Enzymatic saccharification of lignocelluloses should be conducted at elevated pH 5.5 to 6.2. Bioenergy Res 2013, 6((2):476-485.
  • [55]Browse J, McCourt PJ, Somerville CR: Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 1986, 152:141-145.
  • [56]Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuvéglise C, et al.: Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Appl Microbiol Biotechnol 2011, 91(5):1327-1340.
  • [57]Nicaud J-M, Madzak C, van den Broek P, Gysler C, Duboc P, Niederberger P, et al.: Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2002, 2(3):371-379.
  文献评价指标  
  下载次数:100次 浏览次数:21次