BMC Bioinformatics | |
Predicting substrates of the human breast cancer resistance protein using a support vector machine method | |
Eszter Hazai1  Istvan Hazai1  Isabelle Ragueneau-Majlessi2  Sophie P Chung2  Zsolt Bikadi1  Qingcheng Mao2  | |
[1] Virtua Drug Ltd., Csalogany Street 4, Budapest H-1015, Hungary | |
[2] Department of Pharmaceutics, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, USA | |
关键词: ABCG2; BCRP; Substrate; in silico prediction; ABC transporter; ATP-binding cassette; SVM; Support vector machine; Breast cancer resistance protein; | |
Others : 1087905 DOI : 10.1186/1471-2105-14-130 |
|
received in 2012-11-06, accepted in 2013-04-12, 发布年份 2013 | |
【 摘 要 】
Background
Human breast cancer resistance protein (BCRP) is an ATP-binding cassette (ABC) efflux transporter that confers multidrug resistance in cancers and also plays an important role in the absorption, distribution and elimination of drugs. Prediction as to if drugs or new molecular entities are BCRP substrates should afford a cost-effective means that can help evaluate the pharmacokinetic properties, efficacy, and safety of these drugs or drug candidates. At present, limited studies have been done to develop in silico prediction models for BCRP substrates.
In this study, we developed support vector machine (SVM) models to predict wild-type BCRP substrates based on a total of 263 known BCRP substrates and non-substrates collected from literature. The final SVM model was integrated to a free web server.
Results
We showed that the final SVM model had an overall prediction accuracy of ~73% for an independent external validation data set of 40 compounds. The prediction accuracy for wild-type BCRP substrates was ~76%, which is higher than that for non-substrates. The free web server (http://bcrp.althotas.com webcite) allows the users to predict whether a query compound is a wild-type BCRP substrate and calculate its physicochemical properties such as molecular weight, logP value, and polarizability.
Conclusions
We have developed an SVM prediction model for wild-type BCRP substrates based on a relatively large number of known wild-type BCRP substrates and non-substrates. This model may prove valuable for screening substrates and non-substrates of BCRP, a clinically important ABC efflux drug transporter.
【 授权许可】
2013 Hazai et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150117054720803.pdf | 162KB | download |
【 参考文献 】
- [1]Ni Z, Bikadi Z, Rosenberg MF, Mao Q: Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab 2010, 11(7):603-617.
- [2]Natarajan K, Xie Y, Baer MR, Ross DD: Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 2012, 83(8):1084-1103.
- [3]Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH: Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001, 61(8):3458-3464.
- [4]Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM: Membrane transporters in drug development. Nat Rev Drug Discov 2010, 9(3):215-236.
- [5]Rosenberg MF, Bikadi Z, Chan J, Liu X, Ni Z, Cai X, Ford RC, Mao Q: The human breast cancer resistance protein (BCRP/ABCG2) shows conformational changes with mitoxantrone. Structure 2010, 18(4):482-493.
- [6]Gandhi YA, Morris ME: Structure-activity relationships and quantitative structure-activity relationships for breast cancer resistance protein (ABCG2). AAPS J 2009, 11(3):541-552.
- [7]Ishikawa T, Hirano H, Saito H, Sano K, Ikegami Y, Yamaotsu N, Hirono S: Quantitative structure-activity relationship (QSAR) analysis to predict drug-drug interactions of ABC transporter ABCG2. Mini Rev Med Chem 2012, 12(6):505-514.
- [8]Nicolle E, Boumendjel A, Macalou S, Genoux E, Ahmed-Belkacem A, Carrupt PA, Di Pietro A: QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev 2009, 61(1):34-46.
- [9]Zhang S, Yang X, Coburn RA, Morris ME: Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 2005, 70(4):627-639.
- [10]van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ: Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 2001, 11(1):29-32.
- [11]Matsson P, Englund G, Ahlin G, Bergstrom CA, Norinder U, Artursson P: A global drug inhibition pattern for the human ATP-binding cassette transporter breast cancer resistance protein (ABCG2). J Pharmacol Exp Ther 2007, 323(1):19-30.
- [12]Cramer J, Kopp S, Bates SE, Chiba P, Ecker GF: Multispecificity of drug transporters: probing inhibitor selectivity for the human drug efflux transporters ABCB1 and ABCG2. ChemMedChem 2007, 2(12):1783-1788.
- [13]Pick A, Muller H, Wiese M: Structure-activity relationships of new inhibitors of breast cancer resistance protein (ABCG2). Bioorg Med Chem 2008, 16(17):8224-8236.
- [14]Ahmed-Belkacem A, Pozza A, Munoz-Martinez F, Bates SE, Castanys S, Gamarro F, Di Pietro A, Perez-Victoria JM: Flavonoid structure-activity studies identify 6-prenylchrysin and tectochrysin as potent and specific inhibitors of breast cancer resistance protein ABCG2. Cancer Res 2005, 65(11):4852-4860.
- [15]Ahmed-Belkacem A, Macalou S, Borrelli F, Capasso R, Fattorusso E, Taglialatela-Scafati O, Di Pietro A: Nonprenylated rotenoids, a new class of potent breast cancer resistance protein inhibitors. J Med Chem 2007, 50(8):1933-1938.
- [16]Nakagawa H, Saito H, Ikegami Y, Aida-Hyugaji S, Sawada S, Ishikawa T: Molecular modeling of new camptothecin analogues to circumvent ABCG2-mediated drug resistance in cancer. Cancer Lett 2006, 234(1):81-89.
- [17]Wang Z, Chen Y, Liang H, Bender A, Glen RC, Yan A: P-glycoprotein substrate models using support vector machines based on a comprehensive data set. J Chem Inf Model 2011, 51(6):1447-1456.
- [18]Xue Y, Yap CW, Sun LZ, Cao ZW, Wang JF, Chen YZ: Prediction of P-glycoprotein substrates by a support vector machine approach. J Chem Inf Comput Sci 2004, 44(4):1497-1505.
- [19]Huang J, Ma G, Muhammad I, Cheng Y: Identifying P-glycoprotein substrates using a support vector machine optimized by a particle swarm. J Chem Inf Model 2007, 47(4):1638-1647.
- [20]Bikadi Z, Hazai I, Malik D, Jemnitz K, Veres Z, Hari P, Ni Z, Loo TW, Clarke DM, Hazai E: Predicting P-glycoprotein-mediated drug transport based on support vector machine and three-dimensional crystal structure of P-glycoprotein. PLoS One 2011, 6(10):e25815.
- [21]Zhong L, Ma CY, Zhang H, Yang LJ, Wan HL, Xie QQ, Li LL, Yang SY: A prediction model of substrates and non-substrates of breast cancer resistance protein (BCRP) developed by GA-CG-SVM method. Comput Biol Med 2011, 41(11):1006-1013.
- [22]Mishra NK, Agarwal S, Raghava GP: Prediction of cytochrome P450 isoform responsible for metabolizing a drug molecule. BMC Pharmacol 2010, 10:8.
- [23]Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE: Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 2001, 61(18):6635-6639.
- [24]Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsky MS, Bates SE: Mutations at amino-acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 2003, 89(10):1971-1978.
- [25]Ozvegy-Laczka C, Koblos G, Sarkadi B, Varadi A: Single amino acid (482) variants of the ABCG2 multidrug transporter: major differences in transport capacity and substrate recognition. Biochim Biophys Acta 2005, 1668(1):53-63.
- [26]Gasteiger JMM: Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron 1980, 36:3219-3228.