会议论文详细信息
2018 2nd annual International Conference on Cloud Technology and Communication Engineering
A New SSOPMV Learning for Matrix Data Sets
计算机科学;无线电电子学
Zhu, Changming^1 ; Mei, Chengjiu^1 ; Zhou, Rigui^1 ; Wei, Lai^1 ; Zhang, Xiafen^1 ; Yao, Min^1
College of Information Engineering, Shanghai Maritime University, No. 1550, LinGang Ave., Shanghai, China^1
关键词: Learning machines;    Multi-view datum;    Multi-view learning;    Multi-views;    Process matrix;    Real-world;    Semi-supervised;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/466/1/012111/pdf
DOI  :  10.1088/1757-899X/466/1/012111
学科分类:计算机科学(综合)
来源: IOP
PDF
【 摘 要 】

In real-world applications, most multi-view data sets are semi-supervised and large-scale. In order to process these data sets, scholars have developed semi-supervise done-pass multi-view learning (SSOPMV). While SSOPMV cannot process matrix data sets. Thus this manuscript extends the model of SSOPMV to matrix version and the new learning machine is named matrix-instance-based SSOPMV, i.e. (MSSOPMV). Related experiments validate that MSSOPMV can process multi-view, semi-supervised, large-scale, and matrix data sets well.

【 预 览 】
附件列表
Files Size Format View
A New SSOPMV Learning for Matrix Data Sets 450KB PDF download
  文献评价指标  
  下载次数:28次 浏览次数:27次